Generalized C⁎-convexity in completely positive maps

IF 1.2 3区 数学 Q1 MATHEMATICS
Anand O. R, K. Sumesh
{"title":"Generalized C⁎-convexity in completely positive maps","authors":"Anand O. R,&nbsp;K. Sumesh","doi":"10.1016/j.jmaa.2025.129700","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we generalize a specific quantized convexity structure of the generalized state space of a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra and examine the associated extreme points. We introduce the notion of <em>P</em>-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex subsets, where <em>P</em> is any positive operator on a Hilbert space <span><math><mi>H</mi></math></span>. These subsets are defined with in the set of all completely positive (CP) maps from a unital <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-algebra <span><math><mi>A</mi></math></span> into the algebra <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> of bounded linear maps on <span><math><mi>H</mi></math></span>. In particular, we focus on certain <em>P</em>-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex sets, denoted by <span><math><msup><mrow><mi>CP</mi></mrow><mrow><mo>(</mo><mi>P</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo><mo>)</mo></math></span>, and analyze their extreme points with respect to this new convexity structure. This generalizes the existing notions of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex subsets and <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-extreme points of unital completely positive maps. We significantly extend many of the known results regarding the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-extreme points of unital completely positive maps into the context of <em>P</em>-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex sets we are considering. This includes an abstract characterization and the structure of <em>P</em>-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-extreme points. Further, we discuss the connection between <em>P</em>-<span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-extreme points and linear extreme points of these convex sets, as well as Krein-Milman type theorems. Additionally, using these studies, we completely characterize the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-extreme points of the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-convex set of all contractive completely positive maps from <span><math><mi>A</mi></math></span> into <span><math><mi>B</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span>, where <span><math><mi>H</mi></math></span> is finite-dimensional.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"551 2","pages":"Article 129700"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25004810","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we generalize a specific quantized convexity structure of the generalized state space of a C-algebra and examine the associated extreme points. We introduce the notion of P-C-convex subsets, where P is any positive operator on a Hilbert space H. These subsets are defined with in the set of all completely positive (CP) maps from a unital C-algebra A into the algebra B(H) of bounded linear maps on H. In particular, we focus on certain P-C-convex sets, denoted by CP(P)(A,B(H)), and analyze their extreme points with respect to this new convexity structure. This generalizes the existing notions of C-convex subsets and C-extreme points of unital completely positive maps. We significantly extend many of the known results regarding the C-extreme points of unital completely positive maps into the context of P-C-convex sets we are considering. This includes an abstract characterization and the structure of P-C-extreme points. Further, we discuss the connection between P-C-extreme points and linear extreme points of these convex sets, as well as Krein-Milman type theorems. Additionally, using these studies, we completely characterize the C-extreme points of the C-convex set of all contractive completely positive maps from A into B(H), where H is finite-dimensional.
完全正映射中的广义C - f -凸性
在本文中,我们推广了C -代数广义状态空间的一个特定的量子化凸结构,并检验了相关的极值点。我们引入了P-C -凸子集的概念,其中P是Hilbert空间H上的任意正算子。这些子集被定义为从一个一元C -代数a到H上的有界线性映射的代数B(H)的所有完全正(CP)映射的集合。我们特别关注了某些P-C -凸集,记为CP(P)(a,B(H)),并分析了它们在这个新的凸结构下的极值点。推广了已有的C -凸子集和C -完全正映射的C -极值点的概念。我们将许多关于单位完全正映射的C -C -极值点的已知结果显著地扩展到我们正在考虑的P-C -C -凸集的上下文中。这包括一个抽象的表征和P-C -极端点的结构。进一步讨论了这些凸集的P-C -极限点与线性极限点之间的联系,以及Krein-Milman型定理。此外,利用这些研究,我们完全刻画了从A到B(H)的所有压缩完全正映射的C -凸集的C -极端点,其中H是有限维的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信