Numerical analysis for an evolution equation with the p-biharmonic operator

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Rui M.P. Almeida , José C.M. Duque , Jorge Ferreira , Willian S. Panni
{"title":"Numerical analysis for an evolution equation with the p-biharmonic operator","authors":"Rui M.P. Almeida ,&nbsp;José C.M. Duque ,&nbsp;Jorge Ferreira ,&nbsp;Willian S. Panni","doi":"10.1016/j.apnum.2025.05.006","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we consider a parabolic equation with the <em>p</em>-biharmonic operator, where <span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span>. By employing a suitable change of variable, we transform the fourth-order nonlinear parabolic problem into a system of two second-order differential equations. We investigate the properties of the discretized solution in spatial and temporal variables. Using the Brouwer fixed point theorem we prove the existence of the discretized solution. Through classical functional analysis techniques we demonstrate the uniqueness and a priori estimates of the discretized solution. We establish the order of convergence in space and time, we establish the relationship between the temporal variable and the spatial variable, ensuring the existence of the convergence order. Additionally, we highlight that the change in variable carried out is extremely advantageous, as it allows us to obtain the order of convergence for the solution and its higher order derivatives using only lower-degree polynomials. Finally, using the finite element method with Lagrange basis, we implement the computational codes in Matlab software, considering the one and two-dimensional cases. We present three examples to illustrate and validate the theory.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"216 ","pages":"Pages 164-186"},"PeriodicalIF":2.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425001047","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a parabolic equation with the p-biharmonic operator, where p>1. By employing a suitable change of variable, we transform the fourth-order nonlinear parabolic problem into a system of two second-order differential equations. We investigate the properties of the discretized solution in spatial and temporal variables. Using the Brouwer fixed point theorem we prove the existence of the discretized solution. Through classical functional analysis techniques we demonstrate the uniqueness and a priori estimates of the discretized solution. We establish the order of convergence in space and time, we establish the relationship between the temporal variable and the spatial variable, ensuring the existence of the convergence order. Additionally, we highlight that the change in variable carried out is extremely advantageous, as it allows us to obtain the order of convergence for the solution and its higher order derivatives using only lower-degree polynomials. Finally, using the finite element method with Lagrange basis, we implement the computational codes in Matlab software, considering the one and two-dimensional cases. We present three examples to illustrate and validate the theory.
具有p-双调和算子的演化方程的数值分析
本文考虑具有p-双调和算子的抛物方程,其中p>;1。通过适当的变量变换,我们将四阶非线性抛物问题转化为两个二阶微分方程组。研究了空间变量和时间变量下离散解的性质。利用browwer不动点定理证明了离散解的存在性。通过经典的泛函分析技术,我们证明了离散解的唯一性和先验估计。建立了空间和时间上的收敛阶数,建立了时间变量和空间变量之间的关系,保证了收敛阶数的存在。此外,我们强调变量的变化是非常有利的,因为它允许我们仅使用低次多项式获得解及其高阶导数的收敛阶数。最后,采用拉格朗日基有限元法,在Matlab软件中分别考虑一维和二维情况,实现了计算代码。我们给出了三个例子来说明和验证这一理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信