{"title":"Optimizing uncertainty estimation in Enhanced Monte Carlo methods","authors":"Konstantinos N. Anyfantis","doi":"10.1016/j.strusafe.2025.102617","DOIUrl":null,"url":null,"abstract":"<div><div>The probability of failure serves as a key metric in a structural reliability analysis, but its accurate estimation remains computationally demanding, particularly for low-probability failure events. The Enhanced Monte Carlo (EMC) method has been developed in order to alleviate from inefficiencies due to the high number of required simulations. Recent advancements integrate Machine Learning techniques with the EMC to further accelerate the estimation process. However, a critical limitation of EMC lies in its fitted confidence interval (CI) estimation, which tends to overestimate uncertainty, leading to unnecessary computational overhead. This study proposes a new prescriptive CI formulation constructed from the method’s hyperparameters, offering a more accurate and computationally efficient approach to uncertainty quantification. The method is general and can be applied to any reliability problem that can be described by a probability curve. The effectiveness of the proposed method is demonstrated through a benchmark reliability problem and a real-world marine structural application. The results indicate significant improvements in efficiency without compromising accuracy, paving the way for enhanced structural reliability assessments.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"116 ","pages":"Article 102617"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000451","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The probability of failure serves as a key metric in a structural reliability analysis, but its accurate estimation remains computationally demanding, particularly for low-probability failure events. The Enhanced Monte Carlo (EMC) method has been developed in order to alleviate from inefficiencies due to the high number of required simulations. Recent advancements integrate Machine Learning techniques with the EMC to further accelerate the estimation process. However, a critical limitation of EMC lies in its fitted confidence interval (CI) estimation, which tends to overestimate uncertainty, leading to unnecessary computational overhead. This study proposes a new prescriptive CI formulation constructed from the method’s hyperparameters, offering a more accurate and computationally efficient approach to uncertainty quantification. The method is general and can be applied to any reliability problem that can be described by a probability curve. The effectiveness of the proposed method is demonstrated through a benchmark reliability problem and a real-world marine structural application. The results indicate significant improvements in efficiency without compromising accuracy, paving the way for enhanced structural reliability assessments.
期刊介绍:
Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment