Decoupling Global and Local Structural Changes in Self-aminoacylating Ribozymes Reveals the Critical Role of Local Structural Dynamics in Ribozyme Activity

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Kai Cheng, Hsing-Hui Chu, Ning-Jun Yang and Yei-Chen Lai*, 
{"title":"Decoupling Global and Local Structural Changes in Self-aminoacylating Ribozymes Reveals the Critical Role of Local Structural Dynamics in Ribozyme Activity","authors":"Yu-Kai Cheng,&nbsp;Hsing-Hui Chu,&nbsp;Ning-Jun Yang and Yei-Chen Lai*,&nbsp;","doi":"10.1021/jacsau.5c0014610.1021/jacsau.5c00146","DOIUrl":null,"url":null,"abstract":"<p >Self-aminoacylating ribozymes catalyze the attachment of amino acids to RNA, serving as pivotal models to investigate the catalytic roles of RNA in prebiotic evolution. In this study, we investigated how divalent metal ions (Mg<sup>2+</sup> and Ca<sup>2+</sup>) modulate local and global structures in two such ribozymes, S-1A.1-a and S-2.1-a, using 4-cyanotryptophan (4CNW) fluorescence and native gel electrophoresis. By tracking 4CNW fluorescence changes at varying concentrations of Mg<sup>2+</sup> and Ca<sup>2+</sup> and temperatures, we determined how these ions influence the catalytic sites and overall conformations of the ribozymes. Our findings reveal that Mg<sup>2+</sup> specifically binds to S-1A.1-a at low concentrations, stabilizing the local structure around the aminoacylation site and causing the site to become more buried, which is essential for catalytic activity. Although higher Mg<sup>2+</sup> and Ca<sup>2+</sup> concentrations induce global structural rearrangements, these shifts have minimal impact on the local environment of the aminoacylation site, underscoring the dominance of local structural stability in sustaining ribozyme function. In contrast, the activity of S-2.1-a effectively adapts to both Mg<sup>2+</sup> and Ca<sup>2+</sup>, and its fluorescence results indicate a more solvent-exposed aminoacylation site. Overall, these data highlight that local structural changes in the ribozyme’s catalytic core are more critical for its function than global conformational shifts. Our study highlights the importance of local environmental changes in ion-dependent ribozyme catalysis and provides insights into the molecular mechanisms of self-aminoacylating ribozymes.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 5","pages":"2172–2185 2172–2185"},"PeriodicalIF":8.5000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00146","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Self-aminoacylating ribozymes catalyze the attachment of amino acids to RNA, serving as pivotal models to investigate the catalytic roles of RNA in prebiotic evolution. In this study, we investigated how divalent metal ions (Mg2+ and Ca2+) modulate local and global structures in two such ribozymes, S-1A.1-a and S-2.1-a, using 4-cyanotryptophan (4CNW) fluorescence and native gel electrophoresis. By tracking 4CNW fluorescence changes at varying concentrations of Mg2+ and Ca2+ and temperatures, we determined how these ions influence the catalytic sites and overall conformations of the ribozymes. Our findings reveal that Mg2+ specifically binds to S-1A.1-a at low concentrations, stabilizing the local structure around the aminoacylation site and causing the site to become more buried, which is essential for catalytic activity. Although higher Mg2+ and Ca2+ concentrations induce global structural rearrangements, these shifts have minimal impact on the local environment of the aminoacylation site, underscoring the dominance of local structural stability in sustaining ribozyme function. In contrast, the activity of S-2.1-a effectively adapts to both Mg2+ and Ca2+, and its fluorescence results indicate a more solvent-exposed aminoacylation site. Overall, these data highlight that local structural changes in the ribozyme’s catalytic core are more critical for its function than global conformational shifts. Our study highlights the importance of local environmental changes in ion-dependent ribozyme catalysis and provides insights into the molecular mechanisms of self-aminoacylating ribozymes.

解耦自胺酰化核酶的全局和局部结构变化揭示了局部结构动力学在核酶活性中的关键作用
自氨基酰化核酶催化氨基酸与RNA的附着,是研究RNA在益生元进化中的催化作用的关键模型。在这项研究中,我们研究了二价金属离子(Mg2+和Ca2+)如何调节两种核酶S-1A的局部和全局结构。1-a和S-2.1-a,采用4-氰色氨酸(4CNW)荧光和天然凝胶电泳。通过跟踪4CNW荧光在不同浓度的Mg2+和Ca2+和温度下的变化,我们确定了这些离子如何影响催化位点和核酶的整体构象。我们的研究结果表明Mg2+特异性地与S-1A结合。低浓度的1-a,稳定了氨基酰化位点周围的局部结构,并使该位点变得更加埋藏,这对催化活性至关重要。虽然较高的Mg2+和Ca2+浓度会诱导全局结构重排,但这些变化对氨基酰化位点的局部环境影响最小,强调了局部结构稳定性在维持核酶功能方面的主导地位。相比之下,S-2.1-a的活性有效地适应Mg2+和Ca2+,其荧光结果显示更多的溶剂暴露的氨基酰化位点。总的来说,这些数据强调了核酶催化核心的局部结构变化比全局构象变化对其功能更重要。我们的研究强调了局部环境变化在离子依赖性核酶催化中的重要性,并为自胺酰化核酶的分子机制提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信