Weiming Lin, Tao Ding, Die He, Nan Zhang, Haodong Li, Wenjian Luo, Zhongxia Wei, Min Ke, Sisi Jia*, Chunhai Fan and Le Liang*,
{"title":"DNA Logic-Integrated Quantum Nanosensor for MicroRNA Diagnostics","authors":"Weiming Lin, Tao Ding, Die He, Nan Zhang, Haodong Li, Wenjian Luo, Zhongxia Wei, Min Ke, Sisi Jia*, Chunhai Fan and Le Liang*, ","doi":"10.1021/jacsau.5c0005810.1021/jacsau.5c00058","DOIUrl":null,"url":null,"abstract":"<p >Nanodiamonds (NDs) with nitrogen-vacancy (NV) centers are emerging as powerful quantum nanosensors (QNs) in biomedical applications due to their exceptional sensitivity. However, achieving optimal diagnostics performance necessitates both high sensitivity and selectivity; especially in practical biomedical settings, it remains challenging for QNs to provide quantitative analyses when multiple analytes are present. Here, we present a biosensing platform that integrates DNA logic gates (DLGs) with spin-based quantum sensing, termed DLG-QN for ultrasensitive and ultraselective diagnostics. Utilizing an AND DLG, both NDs and magnetic beads (MBs) are functionalized with hairpin DNA strands. In the presence of both miRNA-21 and miRNA-155─key biomarkers overexpressed in cancer─the hairpin DNAs undergo conformational changes that facilitate DNA-guided self-assembly of NDs and MBs, enriching the target signal. Resonant microwave modulation of ND fluorescence emission allows for high signal-to-noise ratio (SNR) detection by separating the signal from background fluorescence via spin-enhanced analysis. This platform demonstrated ultrasensitive and ultraselective detection of miRNA-21 and miRNA-155 with a limit of detection of 19.8 fM, highlighting its potential as a general biosensing strategy for precision diagnostics involving multiple biomarkers.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 5","pages":"2123–2134 2123–2134"},"PeriodicalIF":8.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanodiamonds (NDs) with nitrogen-vacancy (NV) centers are emerging as powerful quantum nanosensors (QNs) in biomedical applications due to their exceptional sensitivity. However, achieving optimal diagnostics performance necessitates both high sensitivity and selectivity; especially in practical biomedical settings, it remains challenging for QNs to provide quantitative analyses when multiple analytes are present. Here, we present a biosensing platform that integrates DNA logic gates (DLGs) with spin-based quantum sensing, termed DLG-QN for ultrasensitive and ultraselective diagnostics. Utilizing an AND DLG, both NDs and magnetic beads (MBs) are functionalized with hairpin DNA strands. In the presence of both miRNA-21 and miRNA-155─key biomarkers overexpressed in cancer─the hairpin DNAs undergo conformational changes that facilitate DNA-guided self-assembly of NDs and MBs, enriching the target signal. Resonant microwave modulation of ND fluorescence emission allows for high signal-to-noise ratio (SNR) detection by separating the signal from background fluorescence via spin-enhanced analysis. This platform demonstrated ultrasensitive and ultraselective detection of miRNA-21 and miRNA-155 with a limit of detection of 19.8 fM, highlighting its potential as a general biosensing strategy for precision diagnostics involving multiple biomarkers.