DNA Logic-Integrated Quantum Nanosensor for MicroRNA Diagnostics

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY
Weiming Lin, Tao Ding, Die He, Nan Zhang, Haodong Li, Wenjian Luo, Zhongxia Wei, Min Ke, Sisi Jia*, Chunhai Fan and Le Liang*, 
{"title":"DNA Logic-Integrated Quantum Nanosensor for MicroRNA Diagnostics","authors":"Weiming Lin,&nbsp;Tao Ding,&nbsp;Die He,&nbsp;Nan Zhang,&nbsp;Haodong Li,&nbsp;Wenjian Luo,&nbsp;Zhongxia Wei,&nbsp;Min Ke,&nbsp;Sisi Jia*,&nbsp;Chunhai Fan and Le Liang*,&nbsp;","doi":"10.1021/jacsau.5c0005810.1021/jacsau.5c00058","DOIUrl":null,"url":null,"abstract":"<p >Nanodiamonds (NDs) with nitrogen-vacancy (NV) centers are emerging as powerful quantum nanosensors (QNs) in biomedical applications due to their exceptional sensitivity. However, achieving optimal diagnostics performance necessitates both high sensitivity and selectivity; especially in practical biomedical settings, it remains challenging for QNs to provide quantitative analyses when multiple analytes are present. Here, we present a biosensing platform that integrates DNA logic gates (DLGs) with spin-based quantum sensing, termed DLG-QN for ultrasensitive and ultraselective diagnostics. Utilizing an AND DLG, both NDs and magnetic beads (MBs) are functionalized with hairpin DNA strands. In the presence of both miRNA-21 and miRNA-155─key biomarkers overexpressed in cancer─the hairpin DNAs undergo conformational changes that facilitate DNA-guided self-assembly of NDs and MBs, enriching the target signal. Resonant microwave modulation of ND fluorescence emission allows for high signal-to-noise ratio (SNR) detection by separating the signal from background fluorescence via spin-enhanced analysis. This platform demonstrated ultrasensitive and ultraselective detection of miRNA-21 and miRNA-155 with a limit of detection of 19.8 fM, highlighting its potential as a general biosensing strategy for precision diagnostics involving multiple biomarkers.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 5","pages":"2123–2134 2123–2134"},"PeriodicalIF":8.5000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.5c00058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.5c00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanodiamonds (NDs) with nitrogen-vacancy (NV) centers are emerging as powerful quantum nanosensors (QNs) in biomedical applications due to their exceptional sensitivity. However, achieving optimal diagnostics performance necessitates both high sensitivity and selectivity; especially in practical biomedical settings, it remains challenging for QNs to provide quantitative analyses when multiple analytes are present. Here, we present a biosensing platform that integrates DNA logic gates (DLGs) with spin-based quantum sensing, termed DLG-QN for ultrasensitive and ultraselective diagnostics. Utilizing an AND DLG, both NDs and magnetic beads (MBs) are functionalized with hairpin DNA strands. In the presence of both miRNA-21 and miRNA-155─key biomarkers overexpressed in cancer─the hairpin DNAs undergo conformational changes that facilitate DNA-guided self-assembly of NDs and MBs, enriching the target signal. Resonant microwave modulation of ND fluorescence emission allows for high signal-to-noise ratio (SNR) detection by separating the signal from background fluorescence via spin-enhanced analysis. This platform demonstrated ultrasensitive and ultraselective detection of miRNA-21 and miRNA-155 with a limit of detection of 19.8 fM, highlighting its potential as a general biosensing strategy for precision diagnostics involving multiple biomarkers.

用于MicroRNA诊断的DNA逻辑集成量子纳米传感器
具有氮空位(NV)中心的纳米金刚石(NDs)由于其优异的灵敏度而成为生物医学应用中强大的量子纳米传感器(QNs)。然而,实现最佳诊断性能需要高灵敏度和选择性;特别是在实际的生物医学环境中,当存在多种分析物时,qn提供定量分析仍然具有挑战性。在这里,我们提出了一个生物传感平台,该平台集成了DNA逻辑门(DLGs)和基于自旋的量子传感,称为DLG-QN,用于超灵敏和超选择性诊断。利用AND DLG, NDs和磁珠(mb)都被发夹DNA链功能化。在癌症中过度表达的关键生物标志物miRNA-21和miRNA-155存在的情况下,发夹dna会发生构象变化,促进dna引导的NDs和mb的自组装,从而丰富靶信号。共振微波调制ND荧光发射允许高信噪比(SNR)检测通过自旋增强分析从背景荧光中分离信号。该平台展示了对miRNA-21和miRNA-155的超灵敏和超选择性检测,检测限为19.8 fM,突出了其作为涉及多种生物标志物的精确诊断的一般生物传感策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信