Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions

Qingdian Yan, Xianghong Li, Jianbin Luo and Ming Zhao*, 
{"title":"Single-Molecule Fluorescence Imaging of Energy-Related Catalytic Reactions","authors":"Qingdian Yan,&nbsp;Xianghong Li,&nbsp;Jianbin Luo and Ming Zhao*,&nbsp;","doi":"10.1021/cbmi.4c0011210.1021/cbmi.4c00112","DOIUrl":null,"url":null,"abstract":"<p >The pressing challenges of the energy crisis and environmental problems necessitate the pursuit of efficient and sustainable energy conversion technologies, wherein catalytic processes play a vital role in addressing these issues. Single-molecule fluorescence microscopy (SMFM) offers a transformative approach to understanding various catalytic reactions by enabling real-time visualization of molecular adsorption, diffusion, and transformation on catalytic surfaces. The unprecedented insights into the spatial distribution of active sites, catalytic heterogeneity, and the dynamics of key intermediates result in single- or subparticle level structure–property relations, thereby offering insightful perspectives for catalyst design and mechanistic understanding of energy-related catalytic processes. In this review, we provide an overview of the recent progress in using SMFM for investigating energy-related catalytic reactions. The advancement in SMFM imaging techniques for investigating nonfluorescent chemical processes is also highlighted. Finally, we conclude the review by commenting on the current challenges and prospects in advancing SMFM in energy research. We hope that the capable SMFM imaging techniques and insights will promote the development and realistic application of various energy-related catalytic reactions, together with inspiring researchers to explore the power of SMFM in other applications.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"3 5","pages":"280–300 280–300"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbmi.4c00112","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbmi.4c00112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The pressing challenges of the energy crisis and environmental problems necessitate the pursuit of efficient and sustainable energy conversion technologies, wherein catalytic processes play a vital role in addressing these issues. Single-molecule fluorescence microscopy (SMFM) offers a transformative approach to understanding various catalytic reactions by enabling real-time visualization of molecular adsorption, diffusion, and transformation on catalytic surfaces. The unprecedented insights into the spatial distribution of active sites, catalytic heterogeneity, and the dynamics of key intermediates result in single- or subparticle level structure–property relations, thereby offering insightful perspectives for catalyst design and mechanistic understanding of energy-related catalytic processes. In this review, we provide an overview of the recent progress in using SMFM for investigating energy-related catalytic reactions. The advancement in SMFM imaging techniques for investigating nonfluorescent chemical processes is also highlighted. Finally, we conclude the review by commenting on the current challenges and prospects in advancing SMFM in energy research. We hope that the capable SMFM imaging techniques and insights will promote the development and realistic application of various energy-related catalytic reactions, together with inspiring researchers to explore the power of SMFM in other applications.

能量相关催化反应的单分子荧光成像
能源危机和环境问题的紧迫挑战要求追求高效和可持续的能源转换技术,其中催化过程在解决这些问题方面起着至关重要的作用。单分子荧光显微镜(SMFM)提供了一种变革性的方法,通过使分子吸附、扩散和催化表面转化的实时可视化来理解各种催化反应。对活性位点的空间分布、催化非均质性和关键中间体动力学的前所未有的见解导致了单或亚颗粒水平的结构-性质关系,从而为催化剂设计和能源相关催化过程的机理理解提供了深刻的见解。在这篇综述中,我们概述了利用SMFM研究能源相关催化反应的最新进展。研究非荧光化学过程的SMFM成像技术的进步也得到了强调。最后,我们对SMFM在能源研究中面临的挑战和前景进行了总结。我们希望SMFM成像技术和见解能够促进各种能源相关催化反应的发展和实际应用,并激励研究人员探索SMFM在其他应用中的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信