Revisiting k: Time-varying stream litter breakdown rates

IF 5 2区 地球科学 Q1 LIMNOLOGY
Caleb J. Robbins, William J. Matthaeus, Rebecca A. Eckert, Elliot Bastias, Allyn K. Dodd, Jérémy Jabiol, David W. P. Manning, Andrew S. Mehring, Ada Pastor
{"title":"Revisiting k: Time-varying stream litter breakdown rates","authors":"Caleb J. Robbins,&nbsp;William J. Matthaeus,&nbsp;Rebecca A. Eckert,&nbsp;Elliot Bastias,&nbsp;Allyn K. Dodd,&nbsp;Jérémy Jabiol,&nbsp;David W. P. Manning,&nbsp;Andrew S. Mehring,&nbsp;Ada Pastor","doi":"10.1002/lol2.70029","DOIUrl":null,"url":null,"abstract":"<p>Litter decomposition is usually modeled with the negative exponential model, which assumes constant proportional mass loss. We assessed this assumption and its interpretive consequences using 145 stream litter mass loss time series and process-based simulations. Relatively simple (two to three parameters) models allowing time-varying decay rates produced more accurate predictions and were generally more parsimonious. Decomposition trajectories strongly deviated from constant decay for at least 50% of the time series, with the shape influenced by the degree of decomposition covered by a time series. Finally, simulations and empirical evidence suggested that the degree of decomposition covered can interact with time-varying decay rates and leachability to bias estimates of breakdown rates (<i>k</i>) from negative exponential models, obfuscating comparisons within and across studies. Considering alternative models could accelerate understanding and prediction of litter decomposition dynamics by enabling investigation of time-explicit decomposition dynamics and more precise modeling when warranted.</p>","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"10 4","pages":"576-586"},"PeriodicalIF":5.0000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/lol2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://aslopubs.onlinelibrary.wiley.com/doi/10.1002/lol2.70029","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Litter decomposition is usually modeled with the negative exponential model, which assumes constant proportional mass loss. We assessed this assumption and its interpretive consequences using 145 stream litter mass loss time series and process-based simulations. Relatively simple (two to three parameters) models allowing time-varying decay rates produced more accurate predictions and were generally more parsimonious. Decomposition trajectories strongly deviated from constant decay for at least 50% of the time series, with the shape influenced by the degree of decomposition covered by a time series. Finally, simulations and empirical evidence suggested that the degree of decomposition covered can interact with time-varying decay rates and leachability to bias estimates of breakdown rates (k) from negative exponential models, obfuscating comparisons within and across studies. Considering alternative models could accelerate understanding and prediction of litter decomposition dynamics by enabling investigation of time-explicit decomposition dynamics and more precise modeling when warranted.

Abstract Image

Abstract Image

Abstract Image

重新审视k:随时间变化的溪流凋落物分解率
凋落物分解通常采用负指数模型,该模型假定质量损失比例恒定。我们使用145个河流凋落物质量损失时间序列和基于过程的模拟来评估这一假设及其解释后果。相对简单的(两到三个参数)模型允许随时间变化的衰变率产生更准确的预测,并且通常更简洁。分解轨迹至少在50%的时间序列中严重偏离恒定衰减,其形状受到时间序列所覆盖的分解程度的影响。最后,模拟和经验证据表明,覆盖的分解程度可以与随时间变化的衰变率和从负指数模型中对分解率(k)的偏差估计的浸出率相互作用,从而混淆了研究内部和研究之间的比较。考虑替代模型可以通过研究时间显式分解动力学和在必要时更精确的建模来加速对凋落物分解动力学的理解和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信