High‐Entropy Li‐Rich Layered Cathodes with Negligible Voltage Decay through Migration Retardation Effect

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuyu Zhou, Junhong Liao, Wentao Zhang, Pengpeng Dai, Chenglong Yu, Tong Gao, Tingzheng Hou, Guozhong Cao, Shixi Zhao
{"title":"High‐Entropy Li‐Rich Layered Cathodes with Negligible Voltage Decay through Migration Retardation Effect","authors":"Shuyu Zhou, Junhong Liao, Wentao Zhang, Pengpeng Dai, Chenglong Yu, Tong Gao, Tingzheng Hou, Guozhong Cao, Shixi Zhao","doi":"10.1002/adma.202505189","DOIUrl":null,"url":null,"abstract":"The development of advanced Li‐ and Mn‐rich layered cathodes (LRO) is essential for high‐energy lithium‐ion batteries (LIBs). However, LRO exhibits large voltage hysteresis and rapid voltage decay with irreversible TM migration upon prolonged cycling. Given that high‐entropy oxides have expanded the potential for retarding the harmful phase transition and regulating the site energies, therefore a high‐entropy Li<jats:sub>1.17</jats:sub>Mn<jats:sub>0.50</jats:sub>Ni<jats:sub>0.12</jats:sub>Co<jats:sub>0.12</jats:sub>Mg<jats:sub>0.03</jats:sub>Cu<jats:sub>0.02</jats:sub>Ti<jats:sub>0.02</jats:sub>Nb<jats:sub>0.02</jats:sub>O<jats:sub>2</jats:sub> cathode is synthesized (HELRO) for LIBs in the present study, demonstrated significantly improved voltage retention and energy output. In addition, this work unveils the sluggish degradation of superlattice and local structure in HELRO during long charge–discharge cycles and explains the “migration retardation effect.” The higher configurational entropy contributes to the higher energy barriers for in‐plane, out‐of‐plane, and continuous Mn migrations due to the synergistic ionic–covalent enhancement of Mn─O bonds. This work provides new insights for understanding the improvement mechanisms of high entropy cathodes and demonstrates the feasibility of suppressing long‐standing voltage decay by high entropy design combining covalent and ionic elements.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"143 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202505189","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of advanced Li‐ and Mn‐rich layered cathodes (LRO) is essential for high‐energy lithium‐ion batteries (LIBs). However, LRO exhibits large voltage hysteresis and rapid voltage decay with irreversible TM migration upon prolonged cycling. Given that high‐entropy oxides have expanded the potential for retarding the harmful phase transition and regulating the site energies, therefore a high‐entropy Li1.17Mn0.50Ni0.12Co0.12Mg0.03Cu0.02Ti0.02Nb0.02O2 cathode is synthesized (HELRO) for LIBs in the present study, demonstrated significantly improved voltage retention and energy output. In addition, this work unveils the sluggish degradation of superlattice and local structure in HELRO during long charge–discharge cycles and explains the “migration retardation effect.” The higher configurational entropy contributes to the higher energy barriers for in‐plane, out‐of‐plane, and continuous Mn migrations due to the synergistic ionic–covalent enhancement of Mn─O bonds. This work provides new insights for understanding the improvement mechanisms of high entropy cathodes and demonstrates the feasibility of suppressing long‐standing voltage decay by high entropy design combining covalent and ionic elements.
高熵富锂层状阴极,通过迁移延迟效应可忽略电压衰减
开发先进的富含锂和锰的层状阴极(LRO)对于高能锂离子电池(LIBs)至关重要。然而,随着循环时间的延长,LRO表现出较大的电压滞后和快速的电压衰减,并伴有不可逆的TM迁移。鉴于高熵氧化物已经扩大了阻碍有害相变和调节位能的潜力,因此本研究合成了高熵li1.17 mn0.50 ni0.12 co0.12 mg0.03 cu0.02 ti0.02 nb0.020 o2阴极(HELRO)用于LIBs,具有显着提高的电压保持和能量输出。此外,这项工作揭示了HELRO在长充放电周期中超晶格和局部结构的缓慢退化,并解释了“迁移延迟效应”。由于Mn─O键的协同离子共价增强,更高的构型熵有助于平面内、平面外和连续Mn迁移的更高能垒。这项工作为理解高熵阴极的改进机制提供了新的见解,并证明了通过结合共价和离子元素的高熵设计来抑制长期电压衰减的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信