Catalytic Enhancement Through Interfacial Engineering: Ir-MoOx Nanocrystals on Silica for Nitroaromatic Hydrogenation

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Jiayi Li, Shiwei Wang, Zhihao Yu, Haojian Zhang, Lin Zhu, Chunzheng Wu, Hongbo Yu
{"title":"Catalytic Enhancement Through Interfacial Engineering: Ir-MoOx Nanocrystals on Silica for Nitroaromatic Hydrogenation","authors":"Jiayi Li, Shiwei Wang, Zhihao Yu, Haojian Zhang, Lin Zhu, Chunzheng Wu, Hongbo Yu","doi":"10.1021/acs.iecr.5c00455","DOIUrl":null,"url":null,"abstract":"The selective hydrogenation of halogenated nitroarenes into halogenated anilines poses a significant challenge due to the common issue of dehalogenation, which often results in low selectivity. In this research, we developed SiO<sub>2</sub>-supported Ir-MoO<sub><i>x</i></sub> nanostructures through the in situ transformation of IrMo/SiO<sub>2</sub>. The Ir-MoO<sub><i>x</i></sub>/SiO<sub>2</sub> catalyst we produced, with an optimal Ir/Mo molar ratio of 1:1, achieved a 95.1% conversion rate for <i>p</i>-chloronitrobenzene (<i>p</i>-CNB) and a 97.4% selectivity for <i>p</i>-chloroaniline (<i>p</i>-CAN), significantly outperforming the standalone Ir/SiO<sub>2</sub> catalyst. We explored how the MoO<sub><i>x</i></sub> promoter affects the electronic properties of Ir particles and examined the impact of Ir-MoO<sub><i>x</i></sub> interfaces on catalytic hydrogenation. This was done using advanced techniques, such as H<sub>2</sub> temperature-programmed reduction (H<sub>2</sub>-TPR), H<sub>2</sub> temperature-programmed desorption (H<sub>2</sub>-TPD), O<sub>2</sub> temperature-programmed oxidation (O<sub>2</sub>-TPO), diffuse reflectance infrared Fourier transform spectroscopy, and kinetic analysis. The study revealed that the Ir-MoO<sub><i>x</i></sub> interface plays a crucial role in facilitating H<sub>2</sub> dissociation and enhancing the adsorption of the reactants. Our Ir-MoO<sub><i>x</i></sub>/SiO<sub>2</sub> catalyst showed excellent versatility across a wide range of substrates and maintained strong catalytic stability. This approach has the potential to be applied to other noble-metal-oxide systems for the efficient hydrogenation of halogenated nitroarenes.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"18 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00455","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The selective hydrogenation of halogenated nitroarenes into halogenated anilines poses a significant challenge due to the common issue of dehalogenation, which often results in low selectivity. In this research, we developed SiO2-supported Ir-MoOx nanostructures through the in situ transformation of IrMo/SiO2. The Ir-MoOx/SiO2 catalyst we produced, with an optimal Ir/Mo molar ratio of 1:1, achieved a 95.1% conversion rate for p-chloronitrobenzene (p-CNB) and a 97.4% selectivity for p-chloroaniline (p-CAN), significantly outperforming the standalone Ir/SiO2 catalyst. We explored how the MoOx promoter affects the electronic properties of Ir particles and examined the impact of Ir-MoOx interfaces on catalytic hydrogenation. This was done using advanced techniques, such as H2 temperature-programmed reduction (H2-TPR), H2 temperature-programmed desorption (H2-TPD), O2 temperature-programmed oxidation (O2-TPO), diffuse reflectance infrared Fourier transform spectroscopy, and kinetic analysis. The study revealed that the Ir-MoOx interface plays a crucial role in facilitating H2 dissociation and enhancing the adsorption of the reactants. Our Ir-MoOx/SiO2 catalyst showed excellent versatility across a wide range of substrates and maintained strong catalytic stability. This approach has the potential to be applied to other noble-metal-oxide systems for the efficient hydrogenation of halogenated nitroarenes.

Abstract Image

界面工程催化增强:二氧化硅上Ir-MoOx纳米晶体对硝基芳烃加氢的催化作用
卤化硝基芳烃选择性加氢成卤化苯胺是一个重大挑战,因为脱卤是一个共同的问题,往往导致低选择性。在这项研究中,我们通过IrMo/SiO2的原位转化,开发了二氧化硅负载的Ir-MoOx纳米结构。Ir- moox /SiO2催化剂的最佳Ir/Mo摩尔比为1:1,对氯硝基苯(p-CNB)的转化率为95.1%,对氯苯胺(p-CAN)的选择性为97.4%,明显优于独立Ir/SiO2催化剂。我们探索了MoOx促进剂如何影响Ir粒子的电子性质,并研究了Ir-MoOx界面对催化加氢的影响。这项研究使用了先进的技术,如H2程序升温还原(H2- tpr)、H2程序升温解吸(H2- tpd)、O2程序升温氧化(O2- tpo)、漫反射红外傅里叶变换光谱和动力学分析。研究表明,Ir-MoOx界面在促进H2解离和增强反应物吸附方面起着至关重要的作用。我们的Ir-MoOx/SiO2催化剂在广泛的底物上表现出优异的通用性,并保持了很强的催化稳定性。这种方法有可能应用于其他贵金属-氧化物体系,用于卤化硝基芳烃的有效氢化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信