{"title":"Integrating water quality and water quantity to diagnose the health of water metabolism systems in multi-core multi-level urban agglomerations","authors":"Ying Yang, Jing Wen, Meirong Su, Qionghong Chen","doi":"10.1016/j.watres.2025.123899","DOIUrl":null,"url":null,"abstract":"Urban agglomerations (UAs) are compelled to scrutinize the health of their water systems as the frequency of water crises increases. An urban water system’s health is closely related to metabolism processes. To date, water systems in multi-core multi-level UAs have not been analyzed using water quantity and water quality because of methodological constraints. To address this research gap, we developed an integrated water quality–water quantity model for diagnosing water metabolism systems that could process nested multi-region input-output (MRIO) tables. We coupled the MRIO tables and established two networks, an integrated water quantity–quality metabolism network (IWMN) and a water quantity metabolism network (QWMN). We tested the two networks with data from the Guangdong-Hong Kong-Macao UA and assessed four aspects of the networks’ health, namely vigor, organization, resilience, and collaboration, using ecological network analysis. We discovered that IWMN exhibited lower vigor (internal circulation 10.4%) and organization dominated by dependency (total contribution intensity σ = -23) compared to the QWMN. Polity-driven disparities shaped the robustness distribution, while a mutualism tendency coexisted with a complex exploitation relationship (52.4%), particularly in the core large-sized city of Hong Kong, where 58 new competitive pairs emerged. Thus, we recommend prioritizing Guangdong-Hong Kong-Macao trade optimization for high-water-content products to enhance system health.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"46 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123899","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban agglomerations (UAs) are compelled to scrutinize the health of their water systems as the frequency of water crises increases. An urban water system’s health is closely related to metabolism processes. To date, water systems in multi-core multi-level UAs have not been analyzed using water quantity and water quality because of methodological constraints. To address this research gap, we developed an integrated water quality–water quantity model for diagnosing water metabolism systems that could process nested multi-region input-output (MRIO) tables. We coupled the MRIO tables and established two networks, an integrated water quantity–quality metabolism network (IWMN) and a water quantity metabolism network (QWMN). We tested the two networks with data from the Guangdong-Hong Kong-Macao UA and assessed four aspects of the networks’ health, namely vigor, organization, resilience, and collaboration, using ecological network analysis. We discovered that IWMN exhibited lower vigor (internal circulation 10.4%) and organization dominated by dependency (total contribution intensity σ = -23) compared to the QWMN. Polity-driven disparities shaped the robustness distribution, while a mutualism tendency coexisted with a complex exploitation relationship (52.4%), particularly in the core large-sized city of Hong Kong, where 58 new competitive pairs emerged. Thus, we recommend prioritizing Guangdong-Hong Kong-Macao trade optimization for high-water-content products to enhance system health.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.