Xiaolin Zhang , Tian Li , Ruixiang Li , Wenqing Yan , Wenhan Wang , Guoliang Wang , Xiaojing Li
{"title":"Transpiration drive soil biogeochemical cycles to degrade petroleum hydrocarbons in plant-microbial electrochemical systems","authors":"Xiaolin Zhang , Tian Li , Ruixiang Li , Wenqing Yan , Wenhan Wang , Guoliang Wang , Xiaojing Li","doi":"10.1016/j.jclepro.2025.145822","DOIUrl":null,"url":null,"abstract":"<div><div>The intrusion of petroleum into soil ecosystems causes severe environmental damage. A synergistic plant-microbe-electrochemical soil remediation technology offers a strategic and eco-friendly solution to address this issue. However, the significant mass transfer resistance in soil poses a major limitation for long-distance site remediation. This research introduces a novel technique that leverages water circulation driven by plant transpiration to facilitate the long-distance migration, adsorption, and electrochemical degradation of hydrocarbons. Experimental results demonstrate that the incorporation of <em>Iris tectorum</em>, polyurethane sponge (as an electrode support matrix), and water-retaining agents significantly enhanced soil water circulation, enabling the migration of soluble organic carbon over distances of up to 60 cm. Additionally, the application of a weak voltage (0.7 V) to the electrode further improved total organic carbon (TOC) removal, achieving a reduction of 193 ± 71 mg/L. After 42 days of remediation, hydrological circulation accelerated the degradation of <em>n</em>-alkanes and aromatics, with removal efficiencies reaching 57 % and 44 %, respectively, within the 20–60 cm range in the microbial electrochemical cell (MEC) group. The functional microbiota, enriched with electroactive microorganisms, was effectively cultivated on the anode, with the total abundance of potential hydrocarbon-degrading bacteria increasing by 42 % compared to the control. Furthermore, a scalable configuration has been proposed, offering a novel perspective for multidimensional ecological soil remediation strategies.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"514 ","pages":"Article 145822"},"PeriodicalIF":9.7000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625011722","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The intrusion of petroleum into soil ecosystems causes severe environmental damage. A synergistic plant-microbe-electrochemical soil remediation technology offers a strategic and eco-friendly solution to address this issue. However, the significant mass transfer resistance in soil poses a major limitation for long-distance site remediation. This research introduces a novel technique that leverages water circulation driven by plant transpiration to facilitate the long-distance migration, adsorption, and electrochemical degradation of hydrocarbons. Experimental results demonstrate that the incorporation of Iris tectorum, polyurethane sponge (as an electrode support matrix), and water-retaining agents significantly enhanced soil water circulation, enabling the migration of soluble organic carbon over distances of up to 60 cm. Additionally, the application of a weak voltage (0.7 V) to the electrode further improved total organic carbon (TOC) removal, achieving a reduction of 193 ± 71 mg/L. After 42 days of remediation, hydrological circulation accelerated the degradation of n-alkanes and aromatics, with removal efficiencies reaching 57 % and 44 %, respectively, within the 20–60 cm range in the microbial electrochemical cell (MEC) group. The functional microbiota, enriched with electroactive microorganisms, was effectively cultivated on the anode, with the total abundance of potential hydrocarbon-degrading bacteria increasing by 42 % compared to the control. Furthermore, a scalable configuration has been proposed, offering a novel perspective for multidimensional ecological soil remediation strategies.
期刊介绍:
The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.