Electron Islands‐Induced Interface Engineering in FeP@NiCoP/Mo4P3 for Efficient Hydrogen Evolution Catalysis

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuquan Yang, Ju Hao, Chaojie Lyu, Jinlong Zheng, Yanru Yuan, Chenjing Wang, Kai Li, Hui Ying Yang, Xiaolu Pang
{"title":"Electron Islands‐Induced Interface Engineering in FeP@NiCoP/Mo4P3 for Efficient Hydrogen Evolution Catalysis","authors":"Yuquan Yang, Ju Hao, Chaojie Lyu, Jinlong Zheng, Yanru Yuan, Chenjing Wang, Kai Li, Hui Ying Yang, Xiaolu Pang","doi":"10.1002/adfm.202507225","DOIUrl":null,"url":null,"abstract":"This study employs an “electron island” micro‐interface engineering strategy to construct a NiCoP/Mo<jats:sub>4</jats:sub>P<jats:sub>3</jats:sub> heterostructured catalytic system on a FeP substrate via a synergistic hydrothermal synthesis and low‐temperature phosphorization approach. The unique open hierarchical architecture provides atomic‐scale anchoring sites for small‐sized Mo<jats:sub>4</jats:sub>P<jats:sub>3</jats:sub> quantum dots (QDs), forming a high‐density “electron island‐substrate” micro‐interface network, which drastically increases the population of active micro‐interface sites between the two phases. Concurrently, the discretely distributed QDs induce interfacial charge polarization through quantum confinement effects, generating a robust built‐in electric field at the heterointerfaces that drives directional electron migration. Density functional theory (DFT) calculation shows the interfacial interaction between NiCoP and Mo<jats:sub>4</jats:sub>P<jats:sub>3</jats:sub> can effectively manipulate the electronic architecture and regulate the H* adsorption energy, further decreasing the Gibbs free energy (ΔG<jats:sub>H*</jats:sub>). FeP@NiCoP/Mo<jats:sub>4</jats:sub>P<jats:sub>3</jats:sub> can make full use of the active sites generated at the interface, to give full play to the catalytic properties of heterogeneous structures, which ensures the significantly enhanced hydrogen evolution reaction (HER) catalytic efficiency and excellent long‐term stability in alkaline water and complicated seawater environments. This work provides guidance and direction to maximize the interface effect for designing efficient and stable catalysts.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"64 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202507225","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs an “electron island” micro‐interface engineering strategy to construct a NiCoP/Mo4P3 heterostructured catalytic system on a FeP substrate via a synergistic hydrothermal synthesis and low‐temperature phosphorization approach. The unique open hierarchical architecture provides atomic‐scale anchoring sites for small‐sized Mo4P3 quantum dots (QDs), forming a high‐density “electron island‐substrate” micro‐interface network, which drastically increases the population of active micro‐interface sites between the two phases. Concurrently, the discretely distributed QDs induce interfacial charge polarization through quantum confinement effects, generating a robust built‐in electric field at the heterointerfaces that drives directional electron migration. Density functional theory (DFT) calculation shows the interfacial interaction between NiCoP and Mo4P3 can effectively manipulate the electronic architecture and regulate the H* adsorption energy, further decreasing the Gibbs free energy (ΔGH*). FeP@NiCoP/Mo4P3 can make full use of the active sites generated at the interface, to give full play to the catalytic properties of heterogeneous structures, which ensures the significantly enhanced hydrogen evolution reaction (HER) catalytic efficiency and excellent long‐term stability in alkaline water and complicated seawater environments. This work provides guidance and direction to maximize the interface effect for designing efficient and stable catalysts.
电子岛诱导界面工程在FeP@NiCoP/Mo4P3中的高效析氢催化
本研究采用“电子岛”微界面工程策略,通过协同水热合成和低温磷酸化方法,在FeP衬底上构建了NiCoP/Mo4P3异质结构催化体系。独特的开放层次结构为小尺寸Mo4P3量子点(QDs)提供了原子尺度的锚定位点,形成了高密度的“电子岛-衬底”微界面网络,大大增加了两相之间活性微界面位点的数量。同时,离散分布的量子点通过量子约束效应诱导界面电荷极化,在异质界面产生强大的内置电场,驱动定向电子迁移。密度泛函理论(DFT)计算表明,NiCoP和Mo4P3之间的界面相互作用可以有效地操纵电子结构,调节H*吸附能,进一步降低吉布斯自由能(ΔGH*)。FeP@NiCoP/Mo4P3能充分利用界面处生成的活性位点,充分发挥非均相结构的催化性能,保证了在碱性水和复杂海水环境中显著提高析氢反应(HER)的催化效率和优异的长期稳定性。为设计高效稳定的催化剂提供了界面效应最大化的指导和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信