Dantong Zhu, Judy Z Wu, Patrick T Griffin, Brady A Samuelson, David A Sinclair, Alice E Kane
{"title":"Metabolomics biomarkers of frailty: a longitudinal study of aging female and male mice.","authors":"Dantong Zhu, Judy Z Wu, Patrick T Griffin, Brady A Samuelson, David A Sinclair, Alice E Kane","doi":"10.1038/s41514-025-00237-w","DOIUrl":null,"url":null,"abstract":"<p><p>Frailty is an age-related geriatric syndrome. We performed a longitudinal study of aging female (n = 40) and male (n = 47) C57BL/6NIA mice, measured frailty index and derived metabolomics data from plasma. We identify age-related differentially abundant metabolites, determine frailty-related metabolites, and generate frailty features, both in the whole cohort and sex-stratified subgroups. Using the features, we perform an association study and build a metabolomics-based frailty clock. We find that frailty-related metabolites are enriched for amino acid metabolism and metabolism of cofactors and vitamins, include ergothioneine, tryptophan and alpha-ketoglutarate, and present sex dimorphism. We identify B vitamin metabolism related flavin-adenine dinucleotide and pyridoxate as female-specific frailty biomarkers, and lipid metabolism related sphingomyelins, glycerophosphoethanolamine and glycerophosphocholine as male-specific frailty biomarkers. These associations are confirmed in a validation cohort, with ergothioneine and perfluorooctanesulfonate identified as robust frailty biomarkers. Our results identify sex-specific metabolite frailty biomarkers, and shed light on potential mechanisms.</p>","PeriodicalId":94160,"journal":{"name":"npj aging","volume":"11 1","pages":"40"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102153/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41514-025-00237-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Frailty is an age-related geriatric syndrome. We performed a longitudinal study of aging female (n = 40) and male (n = 47) C57BL/6NIA mice, measured frailty index and derived metabolomics data from plasma. We identify age-related differentially abundant metabolites, determine frailty-related metabolites, and generate frailty features, both in the whole cohort and sex-stratified subgroups. Using the features, we perform an association study and build a metabolomics-based frailty clock. We find that frailty-related metabolites are enriched for amino acid metabolism and metabolism of cofactors and vitamins, include ergothioneine, tryptophan and alpha-ketoglutarate, and present sex dimorphism. We identify B vitamin metabolism related flavin-adenine dinucleotide and pyridoxate as female-specific frailty biomarkers, and lipid metabolism related sphingomyelins, glycerophosphoethanolamine and glycerophosphocholine as male-specific frailty biomarkers. These associations are confirmed in a validation cohort, with ergothioneine and perfluorooctanesulfonate identified as robust frailty biomarkers. Our results identify sex-specific metabolite frailty biomarkers, and shed light on potential mechanisms.