Hyeong Uk Mo, Min Woo Kim, Chang Hun Lee, Jina Kim, Hyun Wook Park, Jae Hong Lim, Chang Hee Yim, Cheol Hee Nam, Jong Hyun Kim, Ho Jae Kwak
{"title":"An in situ visualization system using synchrotron white X-rays to investigate the solidification behaviors of metallic materials.","authors":"Hyeong Uk Mo, Min Woo Kim, Chang Hun Lee, Jina Kim, Hyun Wook Park, Jae Hong Lim, Chang Hee Yim, Cheol Hee Nam, Jong Hyun Kim, Ho Jae Kwak","doi":"10.1107/S1600577525003716","DOIUrl":null,"url":null,"abstract":"<p><p>An advanced imaging platform has been developed to study the microstructural solidification behaviors of metals using synchrotron white X-rays. This system provides submicrometre effective pixel size and a frame rate of thousands per second, enabling high-resolution and high-speed imaging. The system functions independently, facilitating convenient alignment, magnification adjustments, and precise control of the region of interest. Additionally, we designed a specialized furnace for in situ characterization of microstructures during melting and solidification of metallic specimens at high temperature. This furnace meets stringent optical requirements and allows for finely adjusted specimen temperature gradients through the configuration of heating elements and individual current control. The furnace supports stable high-temperature experiments under vacuum, in an argon atmosphere, and at ambient pressure. Using this advanced imaging system, we investigated real-time in situ solidification phenomena of various metallic materials and other solidifying systems such as silicon. We performed image analysis to quantitatively assess microstructural changes, calculate dendritic spacing and determine liquid fractions.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1028-1035"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Synchrotron Radiation","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1107/S1600577525003716","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An advanced imaging platform has been developed to study the microstructural solidification behaviors of metals using synchrotron white X-rays. This system provides submicrometre effective pixel size and a frame rate of thousands per second, enabling high-resolution and high-speed imaging. The system functions independently, facilitating convenient alignment, magnification adjustments, and precise control of the region of interest. Additionally, we designed a specialized furnace for in situ characterization of microstructures during melting and solidification of metallic specimens at high temperature. This furnace meets stringent optical requirements and allows for finely adjusted specimen temperature gradients through the configuration of heating elements and individual current control. The furnace supports stable high-temperature experiments under vacuum, in an argon atmosphere, and at ambient pressure. Using this advanced imaging system, we investigated real-time in situ solidification phenomena of various metallic materials and other solidifying systems such as silicon. We performed image analysis to quantitatively assess microstructural changes, calculate dendritic spacing and determine liquid fractions.
期刊介绍:
Synchrotron radiation research is rapidly expanding with many new sources of radiation being created globally. Synchrotron radiation plays a leading role in pure science and in emerging technologies. The Journal of Synchrotron Radiation provides comprehensive coverage of the entire field of synchrotron radiation and free-electron laser research including instrumentation, theory, computing and scientific applications in areas such as biology, nanoscience and materials science. Rapid publication ensures an up-to-date information resource for scientists and engineers in the field.