Spatio-Temporal Regulation of Gibberellin Biosynthesis Contributes to Optimal Rhizome Bud Development.

IF 4.8 1区 农林科学 Q1 AGRONOMY
Rice Pub Date : 2025-05-24 DOI:10.1186/s12284-025-00798-0
Kanako Bessho-Uehara, Tomoki Omori, Stefan Reuscher, Keisuke Nagai, Ayumi Agata, Mikiko Kojima, Yumiko Takebayashi, Takamasa Suzuki, Hitoshi Sakakibara, Motoyuki Ashikari, Tokunori Hobo
{"title":"Spatio-Temporal Regulation of Gibberellin Biosynthesis Contributes to Optimal Rhizome Bud Development.","authors":"Kanako Bessho-Uehara, Tomoki Omori, Stefan Reuscher, Keisuke Nagai, Ayumi Agata, Mikiko Kojima, Yumiko Takebayashi, Takamasa Suzuki, Hitoshi Sakakibara, Motoyuki Ashikari, Tokunori Hobo","doi":"10.1186/s12284-025-00798-0","DOIUrl":null,"url":null,"abstract":"<p><p>The perennial life cycle involves the reiterative development of sexual and asexual organs. Asexual structures such as rhizomes are found in various plant species, fostering extensive growth and competitive advantages. In the African wild rice Oryza longistaminata, we investigated the formation of rhizomes from axillary buds, which notably bend diagonally downward of the main stem, as the factors determining whether axillary buds become rhizomes or tillers are unclear. Our study revealed that rhizome buds initiate between the third and fifth nodes of seedlings beyond the 6-leaf stage, while the buds above the sixth node develop into tillers. We propose that precise regulation of gibberellin (GA) biosynthesis plays a pivotal role in optimal rhizome bud development, as demonstrated by a comparative transcriptome analysis between tiller buds and rhizome buds and quantification of phytohormones. Furthermore, GA<sub>4</sub> treatment upregulated the expression of genes associated with flowering repression and cell wall modification. These findings highlight the integration of GA biosynthesis and flowering repression genes as crucial in asexual organ development, shedding new light on the molecular mechanisms governing rhizome bud development in O. longistaminata and deepening our understanding of asexual reproduction regulation in perennial plants.</p>","PeriodicalId":21408,"journal":{"name":"Rice","volume":"18 1","pages":"39"},"PeriodicalIF":4.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102016/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rice","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12284-025-00798-0","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The perennial life cycle involves the reiterative development of sexual and asexual organs. Asexual structures such as rhizomes are found in various plant species, fostering extensive growth and competitive advantages. In the African wild rice Oryza longistaminata, we investigated the formation of rhizomes from axillary buds, which notably bend diagonally downward of the main stem, as the factors determining whether axillary buds become rhizomes or tillers are unclear. Our study revealed that rhizome buds initiate between the third and fifth nodes of seedlings beyond the 6-leaf stage, while the buds above the sixth node develop into tillers. We propose that precise regulation of gibberellin (GA) biosynthesis plays a pivotal role in optimal rhizome bud development, as demonstrated by a comparative transcriptome analysis between tiller buds and rhizome buds and quantification of phytohormones. Furthermore, GA4 treatment upregulated the expression of genes associated with flowering repression and cell wall modification. These findings highlight the integration of GA biosynthesis and flowering repression genes as crucial in asexual organ development, shedding new light on the molecular mechanisms governing rhizome bud development in O. longistaminata and deepening our understanding of asexual reproduction regulation in perennial plants.

赤霉素合成的时空调控有助于根茎芽的最佳发育。
多年生的生命周期包括生殖器官和无性器官的反复发育。根茎等无性结构存在于各种植物中,促进了广泛的生长和竞争优势。在非洲野生稻Oryza longistaminata中,我们研究了腋芽形成根状茎的过程,这些根状茎在主茎上呈对角线向下弯曲,因为决定腋芽是成为根状茎还是分蘖的因素尚不清楚。研究表明,6叶期以后,根茎芽在幼苗的第3 ~ 5节之间萌发,第6节以上的芽发育成分蘖。通过分蘖芽和根茎芽的转录组比较分析和植物激素的定量分析,我们认为赤霉素(GA)生物合成的精确调控在根茎芽的最佳发育中起着关键作用。此外,GA4处理上调了与开花抑制和细胞壁修饰相关的基因的表达。这些发现强调了GA生物合成和开花抑制基因的整合在无性器官发育中起着至关重要的作用,为长叶堇根茎芽发育的分子机制提供了新的思路,加深了我们对多年生植物无性生殖调控的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rice
Rice AGRONOMY-
CiteScore
10.10
自引率
3.60%
发文量
60
审稿时长
>12 weeks
期刊介绍: Rice aims to fill a glaring void in basic and applied plant science journal publishing. This journal is the world''s only high-quality serial publication for reporting current advances in rice genetics, structural and functional genomics, comparative genomics, molecular biology and physiology, molecular breeding and comparative biology. Rice welcomes review articles and original papers in all of the aforementioned areas and serves as the primary source of newly published information for researchers and students in rice and related research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信