A large-scale MEG and EEG dataset for object recognition in naturalistic scenes.

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guohao Zhang, Ming Zhou, Shuyi Zhen, Shaohua Tang, Zheng Li, Zonglei Zhen
{"title":"A large-scale MEG and EEG dataset for object recognition in naturalistic scenes.","authors":"Guohao Zhang, Ming Zhou, Shuyi Zhen, Shaohua Tang, Zheng Li, Zonglei Zhen","doi":"10.1038/s41597-025-05174-7","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging with large-scale naturalistic stimuli is increasingly employed to elucidate neural mechanisms of object recognition in natural scenes. However, most existing large-scale neuroimaging datasets with naturalistic stimuli primarily rely on functional magnetic resonance imaging (fMRI), which provides high spatial resolution but is limited in capturing the temporal dynamics. To address this limitation, we extended our Natural Object Dataset-fMRI (NOD-fMRI) by collecting both magnetoencephalography (MEG) and electroencephalography (EEG) data from the same participants while viewing the same naturalistic stimuli. As a result, NOD contains fMRI, MEG, and EEG responses to 57,000 naturalistic images from 30 participants. This enables the examination of brain activity elicited by naturalistic stimuli with both high spatial resolution (via fMRI) and high temporal resolution (via MEG and EEG). Furthermore, the multimodal nature of NOD allows researchers to combine datasets from different modalities to achieve a more comprehensive view of object processing. We believe that the NOD dataset will serve as a valuable resource for advancing our understanding of the cognitive and neural mechanisms underlying object recognition.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"857"},"PeriodicalIF":6.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102372/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-05174-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Neuroimaging with large-scale naturalistic stimuli is increasingly employed to elucidate neural mechanisms of object recognition in natural scenes. However, most existing large-scale neuroimaging datasets with naturalistic stimuli primarily rely on functional magnetic resonance imaging (fMRI), which provides high spatial resolution but is limited in capturing the temporal dynamics. To address this limitation, we extended our Natural Object Dataset-fMRI (NOD-fMRI) by collecting both magnetoencephalography (MEG) and electroencephalography (EEG) data from the same participants while viewing the same naturalistic stimuli. As a result, NOD contains fMRI, MEG, and EEG responses to 57,000 naturalistic images from 30 participants. This enables the examination of brain activity elicited by naturalistic stimuli with both high spatial resolution (via fMRI) and high temporal resolution (via MEG and EEG). Furthermore, the multimodal nature of NOD allows researchers to combine datasets from different modalities to achieve a more comprehensive view of object processing. We believe that the NOD dataset will serve as a valuable resource for advancing our understanding of the cognitive and neural mechanisms underlying object recognition.

Abstract Image

Abstract Image

Abstract Image

一种用于自然场景中目标识别的大规模脑电信号和脑电信号数据集。
大规模自然刺激的神经成像越来越多地用于阐明自然场景中物体识别的神经机制。然而,大多数现有的具有自然刺激的大规模神经成像数据集主要依赖于功能磁共振成像(fMRI),它提供了高空间分辨率,但在捕获时间动态方面受到限制。为了解决这一限制,我们通过收集来自同一参与者的脑磁图(MEG)和脑电图(EEG)数据来扩展我们的自然对象数据集-功能磁共振成像(NOD-fMRI),同时观看相同的自然刺激。因此,NOD包含了对30名参与者的57,000张自然图像的fMRI、MEG和EEG反应。这使得通过高空间分辨率(通过fMRI)和高时间分辨率(通过MEG和EEG)检查自然刺激引起的大脑活动成为可能。此外,NOD的多模态特性允许研究人员将来自不同模态的数据集结合起来,以获得更全面的对象处理视图。我们相信NOD数据集将作为一个有价值的资源,促进我们对物体识别背后的认知和神经机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信