Zhaohui Du, Xiaofeng Zhao, Lin Li, Baohua Yu, Lijiang Miao
{"title":"A study on phonemes recognition method for Mandarin pronunciation based on improved Zipformer-RNN-T(Pruned) modeling.","authors":"Zhaohui Du, Xiaofeng Zhao, Lin Li, Baohua Yu, Lijiang Miao","doi":"10.1371/journal.pone.0324048","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, empowered by artificial intelligence technologies, computer-assisted language learning systems have gradually become a hot topic of research. Currently, the mainstream pronunciation assessment models rely on advanced speech recognition technology, converting speech into phoneme sequences, and then determining mispronounced phonemes through sequence comparison. To optimize the phoneme recognition task in pronunciation evaluation, this paper proposes a Chinese pronunciation phoneme recognition model based on the improved Zipformer-RNN-T(Pruned) architecture, aiming to improve recognition accuracy and reduce parameter count. First, the AISHELL1-PHONEME and ST-CMDS-PHONEME datasets for Mandarin phoneme recognition through data preprocessing. Then, three layers of the Zipformer Block architecture are introduced into the Zipformer encoder to significantly enhance model performance. In the stateless Pred Network, the GELU activation function is adopted to effectively prevent neuron deactivation. Furthermore, a hybrid Pruned RNN-T/CTC Loss fusion strategy is proposed, further optimizing recognition performance. The experimental results demonstrate that the method performs excellently in the phoneme recognition task, achieving a Word Error Rate (WER) of 1.92% (Dev) and 2.12% (Test) on the AISHELL1-PHONEME dataset, and 4.28% (Dev) and 4.51% (Test) on the ST-CMDS-PHONEME dataset. Moreover, the model requires only 61.1M parameters, striking a balance between performance and efficiency.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 5","pages":"e0324048"},"PeriodicalIF":2.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0324048","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, empowered by artificial intelligence technologies, computer-assisted language learning systems have gradually become a hot topic of research. Currently, the mainstream pronunciation assessment models rely on advanced speech recognition technology, converting speech into phoneme sequences, and then determining mispronounced phonemes through sequence comparison. To optimize the phoneme recognition task in pronunciation evaluation, this paper proposes a Chinese pronunciation phoneme recognition model based on the improved Zipformer-RNN-T(Pruned) architecture, aiming to improve recognition accuracy and reduce parameter count. First, the AISHELL1-PHONEME and ST-CMDS-PHONEME datasets for Mandarin phoneme recognition through data preprocessing. Then, three layers of the Zipformer Block architecture are introduced into the Zipformer encoder to significantly enhance model performance. In the stateless Pred Network, the GELU activation function is adopted to effectively prevent neuron deactivation. Furthermore, a hybrid Pruned RNN-T/CTC Loss fusion strategy is proposed, further optimizing recognition performance. The experimental results demonstrate that the method performs excellently in the phoneme recognition task, achieving a Word Error Rate (WER) of 1.92% (Dev) and 2.12% (Test) on the AISHELL1-PHONEME dataset, and 4.28% (Dev) and 4.51% (Test) on the ST-CMDS-PHONEME dataset. Moreover, the model requires only 61.1M parameters, striking a balance between performance and efficiency.
期刊介绍:
PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides:
* Open-access—freely accessible online, authors retain copyright
* Fast publication times
* Peer review by expert, practicing researchers
* Post-publication tools to indicate quality and impact
* Community-based dialogue on articles
* Worldwide media coverage