Automated Diabetic Retinopathy Screening in Out-patient Diabetes Care - Comparison of Two Artificial Intelligence Algorithms: RetCAD and OphtAI.

IF 0.7 4区 医学 Q4 OPHTHALMOLOGY
Klinische Monatsblatter fur Augenheilkunde Pub Date : 2025-09-01 Epub Date: 2025-05-23 DOI:10.1055/a-2620-1956
Florian Maria Bauer, Annette Sauerbeck, Wolfgang Hitzl, Nick Piravej, Josef Schmidbauer
{"title":"Automated Diabetic Retinopathy Screening in Out-patient Diabetes Care - Comparison of Two Artificial Intelligence Algorithms: RetCAD and OphtAI.","authors":"Florian Maria Bauer, Annette Sauerbeck, Wolfgang Hitzl, Nick Piravej, Josef Schmidbauer","doi":"10.1055/a-2620-1956","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The artificial intelligence (AI) can be applied to screening for diabetic retinopathy (DR) from colour fundus photographs. The prerequisite for this is that the AI used can achieve a similar performance in the real world in different study conditions. The aim of this study is therefore to test and compare the latest version of the AI-based algorithms RetCAD and OphtAI for DR screening in a diabetes outpatient clinic.</p><p><strong>Methods: </strong>In the period from August 2023 to November 2023, 150 diabetics were recruited at the outpatient diabetes center of the University Hospital. For each study participant, images were taken with the handheld retinal camera Aurora (Optomed Plc, Oulu, Finland) in Miosis. The images were examined by the ophthalmologist and by the AI-based algorithms RetCAD version 2.2.0 (Thirona Retina, Nijmegen, Netherlands) and OphtAI version 2.3.4 (Groupe Evolucare Technologies, Le Pecq, France) for the presence of DR. The severity of DR was classified using the International Clinical Diabetic Retinopathy (ICDR) scale. Patients with no retinal changes or a mild DR were advised to have an ophthalmological check-up in one year. In the presence of a moderate, severe or proliferative DR, a referral to the treating ophthalmologist was made. For this reason, the severity levels of moderate, severe and proliferative DR have been summarised under the umbrella term of referable DR.</p><p><strong>Results: </strong>No DR was detected in 123 out of 143 (86.0%) diabetics and mild DR was detected in 10 (7.3%). All patients with moderate DR 7 (5.0%), severe 2 (1.5%) and proliferative DR 1 (0.7%) were grouped together as refererable DR and represented a proportion of 7.3%. The AI-based algorithm RetCAD version 2.2.0 achieved a sensitivity of 90% and a specificity of 100% for the detection of a referable DR compared to ophthalmological image assessment. RetCAD rated 98% of the images for image analysis as sufficient or better. In contrast, the second AI-based algorithm OphtAI version 2.3.4 achieved a sensitivity of 70% and a specificity of 100% for the detection of a referable DR. The OphtAI software was able to perform image analysis on all images.</p><p><strong>Conclusion: </strong>The results for the detection of a referable DR were consistent under study conditions and in clinical use for the AI-based algorithm RetCAD. The AI-based algorithm OphtAI, on the other hand, detected fewer patients with moderate DR, which was reflected in lower sensitivity. Both algorithms correctly assigned all patients with severe and proliferative DR. The AI-based algorithms RetCAD and OphtAI tested appear to be suitable for use in a diabetes outpatient clinic and primary care setting, respectively.</p>","PeriodicalId":17904,"journal":{"name":"Klinische Monatsblatter fur Augenheilkunde","volume":" ","pages":"912-919"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445937/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Klinische Monatsblatter fur Augenheilkunde","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2620-1956","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The artificial intelligence (AI) can be applied to screening for diabetic retinopathy (DR) from colour fundus photographs. The prerequisite for this is that the AI used can achieve a similar performance in the real world in different study conditions. The aim of this study is therefore to test and compare the latest version of the AI-based algorithms RetCAD and OphtAI for DR screening in a diabetes outpatient clinic.

Methods: In the period from August 2023 to November 2023, 150 diabetics were recruited at the outpatient diabetes center of the University Hospital. For each study participant, images were taken with the handheld retinal camera Aurora (Optomed Plc, Oulu, Finland) in Miosis. The images were examined by the ophthalmologist and by the AI-based algorithms RetCAD version 2.2.0 (Thirona Retina, Nijmegen, Netherlands) and OphtAI version 2.3.4 (Groupe Evolucare Technologies, Le Pecq, France) for the presence of DR. The severity of DR was classified using the International Clinical Diabetic Retinopathy (ICDR) scale. Patients with no retinal changes or a mild DR were advised to have an ophthalmological check-up in one year. In the presence of a moderate, severe or proliferative DR, a referral to the treating ophthalmologist was made. For this reason, the severity levels of moderate, severe and proliferative DR have been summarised under the umbrella term of referable DR.

Results: No DR was detected in 123 out of 143 (86.0%) diabetics and mild DR was detected in 10 (7.3%). All patients with moderate DR 7 (5.0%), severe 2 (1.5%) and proliferative DR 1 (0.7%) were grouped together as refererable DR and represented a proportion of 7.3%. The AI-based algorithm RetCAD version 2.2.0 achieved a sensitivity of 90% and a specificity of 100% for the detection of a referable DR compared to ophthalmological image assessment. RetCAD rated 98% of the images for image analysis as sufficient or better. In contrast, the second AI-based algorithm OphtAI version 2.3.4 achieved a sensitivity of 70% and a specificity of 100% for the detection of a referable DR. The OphtAI software was able to perform image analysis on all images.

Conclusion: The results for the detection of a referable DR were consistent under study conditions and in clinical use for the AI-based algorithm RetCAD. The AI-based algorithm OphtAI, on the other hand, detected fewer patients with moderate DR, which was reflected in lower sensitivity. Both algorithms correctly assigned all patients with severe and proliferative DR. The AI-based algorithms RetCAD and OphtAI tested appear to be suitable for use in a diabetes outpatient clinic and primary care setting, respectively.

Abstract Image

Abstract Image

Abstract Image

[糖尿病门诊护理中的糖尿病视网膜病变自动筛查——RetCAD和OphtAI两种人工智能算法的比较]。
目的:应用人工智能(AI)对彩色眼底照片进行糖尿病视网膜病变(DR)筛查。这样做的前提是所使用的人工智能可以在不同的学习条件下在现实世界中取得类似的表现。因此,本研究的目的是测试和比较最新版本的基于人工智能的算法RetCAD和OphtAI在糖尿病门诊进行DR筛查。方法:于2023年8月至2023年11月在大学医院糖尿病门诊中心招募150例糖尿病患者。对于每个研究参与者,图像是用Miosis的手持视网膜相机Aurora (Optomed Plc, Oulu, Finland)拍摄的。由眼科医生和基于人工智能的算法RetCAD 2.2.0版(Thirona Retina, Nijmegen,荷兰)和OphtAI 2.3.4版(Groupe Evolucare Technologies, Le Pecq,法国)检查图像是否存在DR。DR的严重程度采用国际临床糖尿病视网膜病变(ICDR)量表进行分类。无视网膜病变或轻度DR的患者建议在一年内进行眼科检查。在存在中度,重度或增殖性DR,转介到治疗眼科医生。因此,中度、重度和增殖性DR的严重程度被总结在可参考DR的总称下。结果:143例糖尿病患者中123例(86.0%)未检测到DR, 10例(7.3%)检测到轻度DR。所有中度DR 7(5.0%)、重度DR 2(1.5%)和增生性DR 1(0.7%)的患者被归为可参考DR,比例为7.3%。与眼科图像评估相比,基于人工智能的RetCAD 2.2.0版本检测可参考DR的灵敏度为90%,特异性为100%。RetCAD对98%的图像进行了足够或更好的图像分析。相比之下,第二种基于人工智能的算法OphtAI 2.3.4版本检测可参考dr的灵敏度为70%,特异性为100%。OphtAI软件能够对所有图像进行图像分析。结论:基于人工智能的RetCAD算法在研究条件和临床应用中对可参考DR的检测结果是一致的。另一方面,基于人工智能的算法OphtAI检测到的中度DR患者较少,这反映在灵敏度较低。两种算法都正确地分配了所有患有严重和增殖性dr的患者。基于人工智能的算法RetCAD和OphtAI测试似乎分别适用于糖尿病门诊和初级保健环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
235
审稿时长
4-8 weeks
期刊介绍: -Konzentriertes Fachwissen aus Klinik und Praxis: Die entscheidenden Ergebnisse der internationalen Forschung - für Sie auf den Punkt gebracht und kritisch kommentiert, Übersichtsarbeiten zu den maßgeblichen Themen der täglichen Praxis, Top informiert - breite klinische Berichterstattung. -CME-Punkte sammeln mit dem Refresher: Effiziente, CME-zertifizierte Fortbildung, mit dem Refresher, 3 CME-Punkte pro Ausgabe - bis zu 36 CME-Punkte im Jahr!. -Aktuelle Rubriken mit echtem Nutzwert: Kurzreferate zu den wichtigsten Artikeln internationaler Zeitschriften, Schwerpunktthema in jedem Heft: Ausführliche Übersichtsarbeiten zu den wichtigsten Themen der Ophthalmologie – so behalten Sie das gesamte Fach im Blick!, Originalien mit den neuesten Entwicklungen, Übersichten zu den relevanten Themen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信