Pauline Crétin, Louise Mahoudeau, Aurélie Joublin-Delavat, Nicolas Paulhan, Elise Labrune, Julien Verdon, Isabelle Louvet, Jean-François Maguer, François Delavat
{"title":"High metabolic versatility and phenotypic heterogeneity in a marine non-cyanobacterial diazotroph.","authors":"Pauline Crétin, Louise Mahoudeau, Aurélie Joublin-Delavat, Nicolas Paulhan, Elise Labrune, Julien Verdon, Isabelle Louvet, Jean-François Maguer, François Delavat","doi":"10.1016/j.cub.2025.04.071","DOIUrl":null,"url":null,"abstract":"<p><p>Marine non-cyanobacterial diazotrophs (NCDs) are widespread in the oceans, but the processes controlling nitrogen fixation in cell populations remain understudied. In this study, we combined high-throughput sequencing, genetic and physiological characterization, and single-cell quantification of nitrogenase expression to investigate the growth strategies of the marine NCD Vibrio diazotrophicus. We demonstrate that this marine NCD is highly versatile, capable of utilizing a broad range of organic and inorganic nitrogen sources. Quantitative fluorescence microscopy revealed intense posttranscriptional regulation of nitrogenase expression and that V. diazotrophicus regulates both the proportion of cells and their nitrogenase expression levels based on ammonium concentration in an NtrC-dependent manner. We also found that this phenotypic heterogeneity in nitrogenase expression is more widespread among marine NCDs, suggesting it is a conserved trait. These findings help explain their high abundance in the oceans and deepen our understanding of their ecological importance.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.04.071","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marine non-cyanobacterial diazotrophs (NCDs) are widespread in the oceans, but the processes controlling nitrogen fixation in cell populations remain understudied. In this study, we combined high-throughput sequencing, genetic and physiological characterization, and single-cell quantification of nitrogenase expression to investigate the growth strategies of the marine NCD Vibrio diazotrophicus. We demonstrate that this marine NCD is highly versatile, capable of utilizing a broad range of organic and inorganic nitrogen sources. Quantitative fluorescence microscopy revealed intense posttranscriptional regulation of nitrogenase expression and that V. diazotrophicus regulates both the proportion of cells and their nitrogenase expression levels based on ammonium concentration in an NtrC-dependent manner. We also found that this phenotypic heterogeneity in nitrogenase expression is more widespread among marine NCDs, suggesting it is a conserved trait. These findings help explain their high abundance in the oceans and deepen our understanding of their ecological importance.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.