Building a human genetic data lake to scale up insights for drug discovery

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Clement Chatelain , Samuel Lessard , Katherine Klinger , Shameer Khader , Emanuele de Rinaldis
{"title":"Building a human genetic data lake to scale up insights for drug discovery","authors":"Clement Chatelain ,&nbsp;Samuel Lessard ,&nbsp;Katherine Klinger ,&nbsp;Shameer Khader ,&nbsp;Emanuele de Rinaldis","doi":"10.1016/j.drudis.2025.104385","DOIUrl":null,"url":null,"abstract":"<div><div>Genome-wide association studies (GWAS) have identified numerous disease-associated variants, yet efficient storage and analysis of genetic data remain a challenge. Here, we propose a scalable genetic data lake (GDL) integrating GWAS, molecular quantitative trait loci (mQTL), and epigenetic data within a big data infrastructure to enable rapid analysis. This framework allows large-scale computations, prioritizing 54 586 gene–trait associations, including 34 779 found exclusively in consortium data sets. By leveraging public, consortium, and private data, this approach enhances target discovery and indication selection, accelerating drug development.</div></div>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":"30 6","pages":"Article 104385"},"PeriodicalIF":6.5000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359644625000984","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Genome-wide association studies (GWAS) have identified numerous disease-associated variants, yet efficient storage and analysis of genetic data remain a challenge. Here, we propose a scalable genetic data lake (GDL) integrating GWAS, molecular quantitative trait loci (mQTL), and epigenetic data within a big data infrastructure to enable rapid analysis. This framework allows large-scale computations, prioritizing 54 586 gene–trait associations, including 34 779 found exclusively in consortium data sets. By leveraging public, consortium, and private data, this approach enhances target discovery and indication selection, accelerating drug development.
建立人类基因数据湖,以扩大对药物发现的见解。
全基因组关联研究(GWAS)已经确定了许多与疾病相关的变异,但遗传数据的有效存储和分析仍然是一个挑战。在这里,我们提出了一个可扩展的遗传数据湖(GDL),将GWAS、分子数量性状位点(mQTL)和表观遗传数据集成在一个大数据基础设施中,以实现快速分析。该框架允许大规模计算,优先排序54 586个基因性状关联,其中34 779个仅在联盟数据集中发现。通过利用公共、联盟和私人数据,这种方法增强了靶点发现和适应症选择,加速了药物开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Discovery Today
Drug Discovery Today 医学-药学
CiteScore
14.80
自引率
2.70%
发文量
293
审稿时长
6 months
期刊介绍: Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed. Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信