Claudia Honisch, Martina Rotondo, Mario Monaco, Stefano Tartaggia, Rohanah Hussain, Giuliano Siligardi, Paolo Ruzza
{"title":"Enhanced Protein Photo-Stability Analysis Using SRCD in the Presence of Phospholipid SUVs.","authors":"Claudia Honisch, Martina Rotondo, Mario Monaco, Stefano Tartaggia, Rohanah Hussain, Giuliano Siligardi, Paolo Ruzza","doi":"10.1002/chem.202500792","DOIUrl":null,"url":null,"abstract":"<p><p>The interaction between lipids and proteins impacts on a multitude of cellular processes and may contribute to the onset of several pathologies and ageing. Such processes are frequently linked to oxidative stress, whereby polyunsaturated fatty acids act as substrates for in vivo lipoxidation. The subsequent lipid peroxidation and/or isomerisation is known to affect membrane organization, as well as to modify proteins and DNA, leading to functional alterations. Aim of this study was to evaluate the capacity of UV denaturation experiments to induce lipid modification and to investigate the influence of lipid presence on the conformational stability of selected soluble model proteins. To this end, the UV-denaturation experiment developed at the B23 beamline of the Diamond Light Source (UK) is employed, which high photon flux and brilliance of the incident beamlight induce protein denaturation when repeated consecutive synchrotron radiation circular dichroism spectra are acquired in the far-UV region, diagnostic of protein folding. This allows the estimation of protein photostability. Our findings show that the presence of lipid vesicles (SUVs) significantly impacts the UV-denaturation of proteins, preserving the native structure in proteins with a high helical content. This suggests that lipids may play a protective role against light-induced damage to proteins.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202500792"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202500792","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between lipids and proteins impacts on a multitude of cellular processes and may contribute to the onset of several pathologies and ageing. Such processes are frequently linked to oxidative stress, whereby polyunsaturated fatty acids act as substrates for in vivo lipoxidation. The subsequent lipid peroxidation and/or isomerisation is known to affect membrane organization, as well as to modify proteins and DNA, leading to functional alterations. Aim of this study was to evaluate the capacity of UV denaturation experiments to induce lipid modification and to investigate the influence of lipid presence on the conformational stability of selected soluble model proteins. To this end, the UV-denaturation experiment developed at the B23 beamline of the Diamond Light Source (UK) is employed, which high photon flux and brilliance of the incident beamlight induce protein denaturation when repeated consecutive synchrotron radiation circular dichroism spectra are acquired in the far-UV region, diagnostic of protein folding. This allows the estimation of protein photostability. Our findings show that the presence of lipid vesicles (SUVs) significantly impacts the UV-denaturation of proteins, preserving the native structure in proteins with a high helical content. This suggests that lipids may play a protective role against light-induced damage to proteins.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.