Clemens Krage , Peyman Malek Mohammadi Nouri , Jens Dernedde , Jayachandran N. Kizhakkedathu , Sarah Hedtrich , Rainer Haag , Katharina Achazi
{"title":"Anti-Inflammatory Effects of Polyglycerol Sulfates and Natural Polyanions in Type 2 Inflammation","authors":"Clemens Krage , Peyman Malek Mohammadi Nouri , Jens Dernedde , Jayachandran N. Kizhakkedathu , Sarah Hedtrich , Rainer Haag , Katharina Achazi","doi":"10.1021/acs.biomac.5c00420","DOIUrl":null,"url":null,"abstract":"<div><div>Type 2 inflammation is an essential defense mechanism of the innate and adaptive immune systems, but when dysregulated, it can cause chronic atopic diseases like allergic asthma and atopic dermatitis. Thymic stromal lymphopoietin (TSLP) helps drive type 2 inflammation by guiding T cells toward a type 2 helper cell (T<sub>H</sub>2) subtype and stimulating B cells’ antibody production. Fibronectin (FN) has recently been found at elevated levels in the plasma of children with atopic dermatitis and shown a potential proinflammatory role in bronchial epithelium tissue models. Both proteins’ surface charges suggest potential interaction with charged molecules. Seeking new strategies against type 2 inflammation, we found that negatively charged polyglycerol sulfates strongly bind to TSLP and FN. We confirmed that these molecules inhibit inflammation by reducing the TSLP-mediated type 2 polarization of CD4<sup>+</sup> T cells. We found that adding polyglycerol sulfate to FN-triggered inflamed bronchial epithelium models reduced TSLP expression and interleukin 6 secretion.</div></div><div><div><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (101KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"26 6","pages":"Pages 3819-3829"},"PeriodicalIF":5.5000,"publicationDate":"2025-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779725002405","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Type 2 inflammation is an essential defense mechanism of the innate and adaptive immune systems, but when dysregulated, it can cause chronic atopic diseases like allergic asthma and atopic dermatitis. Thymic stromal lymphopoietin (TSLP) helps drive type 2 inflammation by guiding T cells toward a type 2 helper cell (TH2) subtype and stimulating B cells’ antibody production. Fibronectin (FN) has recently been found at elevated levels in the plasma of children with atopic dermatitis and shown a potential proinflammatory role in bronchial epithelium tissue models. Both proteins’ surface charges suggest potential interaction with charged molecules. Seeking new strategies against type 2 inflammation, we found that negatively charged polyglycerol sulfates strongly bind to TSLP and FN. We confirmed that these molecules inhibit inflammation by reducing the TSLP-mediated type 2 polarization of CD4+ T cells. We found that adding polyglycerol sulfate to FN-triggered inflamed bronchial epithelium models reduced TSLP expression and interleukin 6 secretion.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.