Giant rainbow trees in sparse random graphs

IF 0.9 3区 数学 Q1 MATHEMATICS
Tolson Bell , Alan Frieze
{"title":"Giant rainbow trees in sparse random graphs","authors":"Tolson Bell ,&nbsp;Alan Frieze","doi":"10.1016/j.ejc.2025.104184","DOIUrl":null,"url":null,"abstract":"<div><div>For any small constant <span><math><mrow><mi>ϵ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, the Erdős-Rényi random graph <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> with high probability has a unique largest component which contains <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices. Let <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> be obtained by assigning each edge in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> a color in <span><math><mrow><mo>[</mo><mi>c</mi><mo>]</mo></mrow></math></span> independently and uniformly. Cooley, Do, Erde, and Missethan proved that for any fixed <span><math><mrow><mi>α</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>α</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> with high probability contains a rainbow tree (a tree that does not repeat colors) which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices, and conjectured that there is one which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span>. In this paper, we achieve the correct leading constant and prove their conjecture correct up to a logarithmic factor in the error term, as we show that with high probability <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>α</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> contains a rainbow tree which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104184"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000691","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For any small constant ϵ>0, the Erdős-Rényi random graph G(n,1+ϵn) with high probability has a unique largest component which contains (1±O(ϵ))2ϵn vertices. Let Gc(n,p) be obtained by assigning each edge in G(n,p) a color in [c] independently and uniformly. Cooley, Do, Erde, and Missethan proved that for any fixed α>0, Gαn(n,1+ϵn) with high probability contains a rainbow tree (a tree that does not repeat colors) which covers (1±O(ϵ))αα+1ϵn vertices, and conjectured that there is one which covers (1±O(ϵ))2ϵn. In this paper, we achieve the correct leading constant and prove their conjecture correct up to a logarithmic factor in the error term, as we show that with high probability Gαn(n,1+ϵn) contains a rainbow tree which covers (1±O(ϵlog(1/ϵ)))2ϵn vertices.
稀疏随机图中的巨型彩虹树
对于任意小常数ϵ>;0,高概率的Erdős-Rényi随机图G(n,1+ϵn)有一个唯一的最大分量,它包含(1±O(λ))2ϵn个顶点。设Gc(n,p)为G(n,p)中的每条边在[c]中独立且均匀地分配一个颜色,从而得到Gc(n,p)。Cooley、Do、Erde和Missethan证明了对于任意固定的α>;0, Gαn(n,1+ϵn)有大概率包含一个覆盖(1±O(λ))αα+1ϵn顶点的彩虹树(一种不重复颜色的树),并推测存在一个覆盖(1±O(λ))2ϵn顶点的彩虹树。在本文中,我们获得了正确的领先常数,并证明了他们的猜想在误差项中的对数因子是正确的,因为我们表明,在高概率下,Gαn(n,1+ϵn)包含一个覆盖(1±O(ϵlog(1/ λ))2ϵn个顶点的彩虹树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信