{"title":"Giant rainbow trees in sparse random graphs","authors":"Tolson Bell , Alan Frieze","doi":"10.1016/j.ejc.2025.104184","DOIUrl":null,"url":null,"abstract":"<div><div>For any small constant <span><math><mrow><mi>ϵ</mi><mo>></mo><mn>0</mn></mrow></math></span>, the Erdős-Rényi random graph <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> with high probability has a unique largest component which contains <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices. Let <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> be obtained by assigning each edge in <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> a color in <span><math><mrow><mo>[</mo><mi>c</mi><mo>]</mo></mrow></math></span> independently and uniformly. Cooley, Do, Erde, and Missethan proved that for any fixed <span><math><mrow><mi>α</mi><mo>></mo><mn>0</mn></mrow></math></span>, <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>α</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> with high probability contains a rainbow tree (a tree that does not repeat colors) which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mfrac><mrow><mi>α</mi></mrow><mrow><mi>α</mi><mo>+</mo><mn>1</mn></mrow></mfrac><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices, and conjectured that there is one which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span>. In this paper, we achieve the correct leading constant and prove their conjecture correct up to a logarithmic factor in the error term, as we show that with high probability <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>α</mi><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mfrac><mrow><mn>1</mn><mo>+</mo><mi>ϵ</mi></mrow><mrow><mi>n</mi></mrow></mfrac><mo>)</mo></mrow></mrow></math></span> contains a rainbow tree which covers <span><math><mrow><mrow><mo>(</mo><mn>1</mn><mo>±</mo><mi>O</mi><mrow><mo>(</mo><mi>ϵ</mi><mo>log</mo><mrow><mo>(</mo><mn>1</mn><mo>/</mo><mi>ϵ</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>)</mo></mrow><mn>2</mn><mi>ϵ</mi><mi>n</mi></mrow></math></span> vertices.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104184"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000691","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For any small constant , the Erdős-Rényi random graph with high probability has a unique largest component which contains vertices. Let be obtained by assigning each edge in a color in independently and uniformly. Cooley, Do, Erde, and Missethan proved that for any fixed , with high probability contains a rainbow tree (a tree that does not repeat colors) which covers vertices, and conjectured that there is one which covers . In this paper, we achieve the correct leading constant and prove their conjecture correct up to a logarithmic factor in the error term, as we show that with high probability contains a rainbow tree which covers vertices.
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.