A generalization of the Erdős-Birch theorem

IF 0.9 3区 数学 Q1 MATHEMATICS
Wang-Xing Yu , Yong-Gao Chen , Shi-Qiang Chen
{"title":"A generalization of the Erdős-Birch theorem","authors":"Wang-Xing Yu ,&nbsp;Yong-Gao Chen ,&nbsp;Shi-Qiang Chen","doi":"10.1016/j.ejc.2025.104187","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> denote the set of all nonnegative integers. A set <span><math><mi>T</mi></math></span> of positive integers is called complete if every sufficiently large integer is the sum of distinct integers taken from <span><math><mi>T</mi></math></span>. In 1959, Birch confirmed a conjecture of Erdős by proving that the set <span><math><mrow><mo>{</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><msubsup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>:</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></mrow></math></span> is complete if <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> are integers with <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. In this paper, the following result is proved: if <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> are integers, then the set <span><span><span><math><mrow><mo>{</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup><mo>:</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></mrow></math></span></span></span>is complete if and only if <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104187"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000721","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let N0 denote the set of all nonnegative integers. A set T of positive integers is called complete if every sufficiently large integer is the sum of distinct integers taken from T. In 1959, Birch confirmed a conjecture of Erdős by proving that the set {s1x1s2x2:x1,x2N0} is complete if s1,s2>1 are integers with gcd(s1,s2)=1. In this paper, the following result is proved: if s1,,sk>1 are integers, then the set {s1x1skxk:x1,,xkN0}is complete if and only if gcd(s1,,sk)2.
Erdős-Birch定理的推广
设N0表示所有非负整数的集合。如果每一个足够大的整数都是取自T的不同整数的和,则称为正整数集T是完全的。1959年,Birch证实了Erdős的一个猜想:如果s1,s2>;1是gcd(s1,s2)=1的整数,则证明集{s1x1s2x2:x1,x2∈N0}是完全的。本文证明了以下结果:若s1,…,sk>;1是整数,则集{s1x1⋯skxk:x1,…,xk∈N0}是完备的当且仅当gcd(s1,…,sk)≤2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信