{"title":"A generalization of the Erdős-Birch theorem","authors":"Wang-Xing Yu , Yong-Gao Chen , Shi-Qiang Chen","doi":"10.1016/j.ejc.2025.104187","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> denote the set of all nonnegative integers. A set <span><math><mi>T</mi></math></span> of positive integers is called complete if every sufficiently large integer is the sum of distinct integers taken from <span><math><mi>T</mi></math></span>. In 1959, Birch confirmed a conjecture of Erdős by proving that the set <span><math><mrow><mo>{</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><msubsup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msubsup><mo>:</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></mrow></math></span> is complete if <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span> are integers with <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></mrow><mo>=</mo><mn>1</mn></mrow></math></span>. In this paper, the following result is proved: if <span><math><mrow><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>></mo><mn>1</mn></mrow></math></span> are integers, then the set <span><span><span><math><mrow><mo>{</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msubsup><mo>⋯</mo><msubsup><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub></mrow></msubsup><mo>:</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>∈</mo><msub><mrow><mi>N</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>}</mo></mrow></math></span></span></span>is complete if and only if <span><math><mrow><mo>gcd</mo><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></mrow><mo>≤</mo><mn>2</mn></mrow></math></span>.</div></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":"128 ","pages":"Article 104187"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669825000721","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the set of all nonnegative integers. A set of positive integers is called complete if every sufficiently large integer is the sum of distinct integers taken from . In 1959, Birch confirmed a conjecture of Erdős by proving that the set is complete if are integers with . In this paper, the following result is proved: if are integers, then the set is complete if and only if .
期刊介绍:
The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.