{"title":"Efficient inverted HTL-free Sm2NiMnO6-based perovskite solar cell: a SCAPS-1D study","authors":"Nassim Ahmed Mahammedi","doi":"10.1007/s40243-025-00308-8","DOIUrl":null,"url":null,"abstract":"<div><p>The transition to sustainable energy has driven extensive research into perovskite solar cells (PSCs) as promising candidates for next-generation photovoltaics. Despite their remarkable efficiencies, the commercialization of PSCs remains hindered by lead toxicity and material instability. In this study, we investigate a lead-free samarium-based double perovskite oxide, Sm<sub>2</sub>NiMnO<sub>6</sub> (SNMO), as the active absorber layer in an innovative inverted, hole transport layer (HTL)-free PSC architecture. Using SCAPS-1D simulations, we optimized the device configuration and achieved a power conversion efficiency (PCE) of 10.93%, with an open-circuit voltage (V<sub>OC</sub>) of 0.8 V, a short-circuit current density (J<sub>SC</sub>) of 16.46 mA cm<sup>−2</sup>, and a fill factor (FF) of 82.14%. Notably, increasing the SNMO absorber thickness enhanced light absorption in the red spectral region, shifting the external quantum efficiency (EQE) peak from 380 nm wavelength at a thickness of 50 nm to approximately 620 nm at 1 µm. Furthermore, we investigated various electron transport layers (ETLs) and found that the indium tin oxide (ITO) exhibited superior PV performances, boosting the PCE to ~ 12.6% due to its excellent conductivity and optimal energy band alignment with SNMO. These findings establish SNMO as a promising absorber material for environmentally friendly PSCs, paving the way for cheaper, simpler, scalable, and sustainable photovoltaic solutions. This work highlights the potential of HTL-free architectures to reduce costs and complexities while maintaining competitive efficiencies, marking a significant step forward in the development of lead-free solar technologies.</p></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00308-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00308-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The transition to sustainable energy has driven extensive research into perovskite solar cells (PSCs) as promising candidates for next-generation photovoltaics. Despite their remarkable efficiencies, the commercialization of PSCs remains hindered by lead toxicity and material instability. In this study, we investigate a lead-free samarium-based double perovskite oxide, Sm2NiMnO6 (SNMO), as the active absorber layer in an innovative inverted, hole transport layer (HTL)-free PSC architecture. Using SCAPS-1D simulations, we optimized the device configuration and achieved a power conversion efficiency (PCE) of 10.93%, with an open-circuit voltage (VOC) of 0.8 V, a short-circuit current density (JSC) of 16.46 mA cm−2, and a fill factor (FF) of 82.14%. Notably, increasing the SNMO absorber thickness enhanced light absorption in the red spectral region, shifting the external quantum efficiency (EQE) peak from 380 nm wavelength at a thickness of 50 nm to approximately 620 nm at 1 µm. Furthermore, we investigated various electron transport layers (ETLs) and found that the indium tin oxide (ITO) exhibited superior PV performances, boosting the PCE to ~ 12.6% due to its excellent conductivity and optimal energy band alignment with SNMO. These findings establish SNMO as a promising absorber material for environmentally friendly PSCs, paving the way for cheaper, simpler, scalable, and sustainable photovoltaic solutions. This work highlights the potential of HTL-free architectures to reduce costs and complexities while maintaining competitive efficiencies, marking a significant step forward in the development of lead-free solar technologies.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies