Dual Space Representation Learning for Skeleton-Based Action Recognition

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuheng Yang;Haipeng Chen;Zhenguang Liu;Sihao Hu;Yingying Jiao
{"title":"Dual Space Representation Learning for Skeleton-Based Action Recognition","authors":"Yuheng Yang;Haipeng Chen;Zhenguang Liu;Sihao Hu;Yingying Jiao","doi":"10.1109/LSP.2025.3564883","DOIUrl":null,"url":null,"abstract":"Skeleton-based action recognition is crucial for machine intelligence. Current methods generally learn from 3D articulated motion sequences in the straightforward Euclidean space. Yet, the <italic>vanilla</i> Euclidean space may not be the optimal choice for modeling the intricate correlations among human body joints. This challenge arises from the non-Euclidean nature of human anatomy, where joint correlations often vary non-linearly during movement. To address this, we propose a dual space representation learning method. Specifically, we represent the motion sequences in Hyperbolic space, leveraging its intrinsic properties to capture the non-Euclidean latent anatomy of human motions. We then incorporate the motion features from both Hyperbolic and Euclidean spaces, allowing us to precisely model the non-linear joint correlations while effectively sketching human poses. The proposed method empirically achieves state-of-the-art performance on the NTU RGB+D 60, NTURGB+D 120, and NW-UCLA datasets.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"2104-2108"},"PeriodicalIF":3.2000,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10978002/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Skeleton-based action recognition is crucial for machine intelligence. Current methods generally learn from 3D articulated motion sequences in the straightforward Euclidean space. Yet, the vanilla Euclidean space may not be the optimal choice for modeling the intricate correlations among human body joints. This challenge arises from the non-Euclidean nature of human anatomy, where joint correlations often vary non-linearly during movement. To address this, we propose a dual space representation learning method. Specifically, we represent the motion sequences in Hyperbolic space, leveraging its intrinsic properties to capture the non-Euclidean latent anatomy of human motions. We then incorporate the motion features from both Hyperbolic and Euclidean spaces, allowing us to precisely model the non-linear joint correlations while effectively sketching human poses. The proposed method empirically achieves state-of-the-art performance on the NTU RGB+D 60, NTURGB+D 120, and NW-UCLA datasets.
基于骨架的动作识别的双空间表示学习
基于骨骼的动作识别对机器智能至关重要。目前的方法一般是从直观欧几里得空间中的三维关节运动序列中学习。然而,香草欧几里得空间可能不是建模人体关节之间复杂关联的最佳选择。这一挑战源于人体解剖学的非欧几里得性质,其中关节相关性在运动过程中经常非线性变化。为了解决这个问题,我们提出了一种对偶空间表示学习方法。具体来说,我们在双曲空间中表示运动序列,利用其固有属性来捕获人类运动的非欧几里得潜解剖。然后,我们结合了双曲和欧几里得空间的运动特征,使我们能够精确地建模非线性关节相关性,同时有效地绘制人体姿势。该方法在NTURGB+ d60、NTURGB+ d120和NW-UCLA数据集上实现了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信