Jiaxing Wang;Guoquan Liu;Yang Cheng;Xiaobo Xu;Zhongyun Li
{"title":"Leveraging Internet-Sourced Text Data for Financial Analytics in Supply Chain Finance: A Large Language Model-Enhanced Text Mining Workflow","authors":"Jiaxing Wang;Guoquan Liu;Yang Cheng;Xiaobo Xu;Zhongyun Li","doi":"10.1109/TEM.2025.3567302","DOIUrl":null,"url":null,"abstract":"In the era of artificial intelligence and fintech, improving the efficiency of financial analysis is essential for financial service providers. This article proposes a novel large language model-enhanced text mining workflow that leverages Internet-sourced text information to efficiently analyze supply chain finance business without requiring programming skills. We conduct a case study on the Chinese market for new energy buses—a rapidly growing sector due to government incentives and the push for sustainable urban transportation—using data from bidding websites and financial statements. The experimental results demonstrate that our LLM-enhanced workflow outperforms traditional methods, showcasing increased efficiency and practicality, especially for non-programming employees in supply chain financial services.","PeriodicalId":55009,"journal":{"name":"IEEE Transactions on Engineering Management","volume":"72 ","pages":"1924-1938"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Engineering Management","FirstCategoryId":"91","ListUrlMain":"https://ieeexplore.ieee.org/document/10994416/","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of artificial intelligence and fintech, improving the efficiency of financial analysis is essential for financial service providers. This article proposes a novel large language model-enhanced text mining workflow that leverages Internet-sourced text information to efficiently analyze supply chain finance business without requiring programming skills. We conduct a case study on the Chinese market for new energy buses—a rapidly growing sector due to government incentives and the push for sustainable urban transportation—using data from bidding websites and financial statements. The experimental results demonstrate that our LLM-enhanced workflow outperforms traditional methods, showcasing increased efficiency and practicality, especially for non-programming employees in supply chain financial services.
期刊介绍:
Management of technical functions such as research, development, and engineering in industry, government, university, and other settings. Emphasis is on studies carried on within an organization to help in decision making or policy formation for RD&E.