{"title":"Travelling-wave gel dipolophoresis of hydrophobic conducting colloids","authors":"Touvia Miloh, Eldad J. Avital","doi":"10.1140/epje/s10189-025-00492-5","DOIUrl":null,"url":null,"abstract":"<div><p>A unified ‘weak-field’ formulation is provided for calculating the combined nonlinear effect of dielectrophoresis and the induced-charge electrophoresis (dipolophoresis) of polarized rigid hydrophobic spherical colloids freely suspended in an electrolyte-saturated Brinkman-hydrogel (porous) medium under a general (direct or alternating currents) non-uniform electric forcing. Explicit expressions for the modified total dipolophoretic mobility of a conducting (metallic) spherical colloid are given in terms of the Brinkman (Darcy), Navier slip, and Debye (screening) length scales. Also presented is a rigorous derivation of the Helmholtz–Smoluchowski slip velocity in terms of these three length scales, including the induced electroosmotic flow field around a hydrophobic rigid colloid embedded in a Brinkman medium that is forced by an arbitrary (non-uniform) ambient electric field. The available solutions for a free (non-porous) electrolyte solution under a uniform forcing and no-slip surface are obtained as limiting cases. For the purpose of illustration, we present and analyse some newly explicit solutions for the mobility and the associated induced-charge electroosmotic velocity field of a slipping colloid set in an effective (hydrogel) porous medium, which is exposed to an ambient ‘sinusoidal’ travelling-wave excitation depending on frequency and wave number.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 4-5","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epje/s10189-025-00492-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00492-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A unified ‘weak-field’ formulation is provided for calculating the combined nonlinear effect of dielectrophoresis and the induced-charge electrophoresis (dipolophoresis) of polarized rigid hydrophobic spherical colloids freely suspended in an electrolyte-saturated Brinkman-hydrogel (porous) medium under a general (direct or alternating currents) non-uniform electric forcing. Explicit expressions for the modified total dipolophoretic mobility of a conducting (metallic) spherical colloid are given in terms of the Brinkman (Darcy), Navier slip, and Debye (screening) length scales. Also presented is a rigorous derivation of the Helmholtz–Smoluchowski slip velocity in terms of these three length scales, including the induced electroosmotic flow field around a hydrophobic rigid colloid embedded in a Brinkman medium that is forced by an arbitrary (non-uniform) ambient electric field. The available solutions for a free (non-porous) electrolyte solution under a uniform forcing and no-slip surface are obtained as limiting cases. For the purpose of illustration, we present and analyse some newly explicit solutions for the mobility and the associated induced-charge electroosmotic velocity field of a slipping colloid set in an effective (hydrogel) porous medium, which is exposed to an ambient ‘sinusoidal’ travelling-wave excitation depending on frequency and wave number.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.