Robust Spatial Cell-Type Deconvolution with Qualitative Reference for Spatial Transcriptomics (Small Methods 5/2025)

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Qishi Dong, Yi Yang, Ziye Luo, Haipeng Shen, Xingjie Shi, Jin Liu
{"title":"Robust Spatial Cell-Type Deconvolution with Qualitative Reference for Spatial Transcriptomics (Small Methods 5/2025)","authors":"Qishi Dong,&nbsp;Yi Yang,&nbsp;Ziye Luo,&nbsp;Haipeng Shen,&nbsp;Xingjie Shi,&nbsp;Jin Liu","doi":"10.1002/smtd.202570030","DOIUrl":null,"url":null,"abstract":"<p><b>Spatial Transcriptomics</b></p><p>In article number 2401145, Xingjie Shi, Jin Liu, and co-workers present QR-SIDE, a robust method for deconvolving multicellular spatial transcriptomics (SRT) data without requiring matched scRNA-seq references. By integrating marker gene spatial heterogeneity via Poisson regression and modeling non-marker genes with a hierarchical factor model, QR-SIDE improves robust cell-type abundance estimation and spatial domain identification. Validated on diverse SRT datasets, QR- IDE enhances spatial tissue analysis at finer cellular resolution.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/smtd.202570030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202570030","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Spatial Transcriptomics

In article number 2401145, Xingjie Shi, Jin Liu, and co-workers present QR-SIDE, a robust method for deconvolving multicellular spatial transcriptomics (SRT) data without requiring matched scRNA-seq references. By integrating marker gene spatial heterogeneity via Poisson regression and modeling non-marker genes with a hierarchical factor model, QR-SIDE improves robust cell-type abundance estimation and spatial domain identification. Validated on diverse SRT datasets, QR- IDE enhances spatial tissue analysis at finer cellular resolution.

鲁棒空间细胞型反褶积与定性参考空间转录组学(小方法5/2025)
在文章编号2401145中,石星杰、刘进等人提出了QR-SIDE,这是一种不需要匹配的scRNA-seq参考文献就能对多细胞空间转录组学(SRT)数据进行反卷积的强大方法。通过泊松回归整合标记基因的空间异质性,并使用分层因子模型对非标记基因进行建模,QR-SIDE提高了稳健的细胞型丰度估计和空间域识别。在不同的SRT数据集上验证,QR- IDE增强了更精细的细胞分辨率的空间组织分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信