{"title":"Development of briquettes suitable for energy generation from residue of sorghum stalk and groundnut husk","authors":"Godif Alene Geberehiet, Tesfaldet Gebregerges Gebreegziabher, Asmelash Gebrekidan Mekonen, Gebrehiwot Kunom Hagos, Tesfay Negassi Gebresilasie","doi":"10.1007/s40243-025-00309-7","DOIUrl":null,"url":null,"abstract":"<div><p>Fossil fuels dominate the world's energy consumption, including transportation, chemicals, and materials generation. Conversely, using conventional energies has resulted in massive environmental damage and climate change. This study looks into developing briquettes from sorghum stalks and groundnut husks utilizing cow dung as a binder for fuel production using the low-pressure compaction method, an important renewable energy source. The briquettes were labeled with cow dung binder compositions (5–25%), ratios (75–95%), and particle sizes ranging from 1 to 3 mm. The raw materials were collected and cleaned, then sun-dried, followed by carbonized and ground using a mortar grinder. Design of Expert (DOE) software, Excel, and analysis of variance (ANOVA) were used to perform numerical and graphical data analyses. After briquetting, the proximate properties of the moisture content were 3.16%, fixed carbon 13.04%, volatile matter 80.20%, and ash 3.6%. The briquette had 51.56% carbon, 6.302% hydrogen, 0.0042% nitrogen, 42.134% oxygen, and 0.00093% sulfur. The calorific value of mixed briquettes varies from 20.08 to 24.36 MJ/kg. The maximum calorific value was achieved with a particle size of 1 mm and a 25% cow dung binder content, as a minimal particle size was preferred. According to the analysis, the created briquettes were smokeless, low in Ash content, and had a high Calorific value for burning above 17 MJ/kg for industrial driving and above 13 MJ/kg for household usage. The result of standardization on the diet of cow dung revealed that grain-fed dung offered a higher calorific value of 20 MJ/kg, while a higher shatter resistance of 90% was recorded using grass straw fed, which outlines the importance of diet on the efficiency of the binder. Developing briquettes from these biomasses can increase job prospects, decrease greenhouse gas emissions, and improve waste management.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":692,"journal":{"name":"Materials for Renewable and Sustainable Energy","volume":"14 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40243-025-00309-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Renewable and Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40243-025-00309-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fossil fuels dominate the world's energy consumption, including transportation, chemicals, and materials generation. Conversely, using conventional energies has resulted in massive environmental damage and climate change. This study looks into developing briquettes from sorghum stalks and groundnut husks utilizing cow dung as a binder for fuel production using the low-pressure compaction method, an important renewable energy source. The briquettes were labeled with cow dung binder compositions (5–25%), ratios (75–95%), and particle sizes ranging from 1 to 3 mm. The raw materials were collected and cleaned, then sun-dried, followed by carbonized and ground using a mortar grinder. Design of Expert (DOE) software, Excel, and analysis of variance (ANOVA) were used to perform numerical and graphical data analyses. After briquetting, the proximate properties of the moisture content were 3.16%, fixed carbon 13.04%, volatile matter 80.20%, and ash 3.6%. The briquette had 51.56% carbon, 6.302% hydrogen, 0.0042% nitrogen, 42.134% oxygen, and 0.00093% sulfur. The calorific value of mixed briquettes varies from 20.08 to 24.36 MJ/kg. The maximum calorific value was achieved with a particle size of 1 mm and a 25% cow dung binder content, as a minimal particle size was preferred. According to the analysis, the created briquettes were smokeless, low in Ash content, and had a high Calorific value for burning above 17 MJ/kg for industrial driving and above 13 MJ/kg for household usage. The result of standardization on the diet of cow dung revealed that grain-fed dung offered a higher calorific value of 20 MJ/kg, while a higher shatter resistance of 90% was recorded using grass straw fed, which outlines the importance of diet on the efficiency of the binder. Developing briquettes from these biomasses can increase job prospects, decrease greenhouse gas emissions, and improve waste management.
期刊介绍:
Energy is the single most valuable resource for human activity and the basis for all human progress. Materials play a key role in enabling technologies that can offer promising solutions to achieve renewable and sustainable energy pathways for the future.
Materials for Renewable and Sustainable Energy has been established to be the world''s foremost interdisciplinary forum for publication of research on all aspects of the study of materials for the deployment of renewable and sustainable energy technologies. The journal covers experimental and theoretical aspects of materials and prototype devices for sustainable energy conversion, storage, and saving, together with materials needed for renewable fuel production. It publishes reviews, original research articles, rapid communications, and perspectives. All manuscripts are peer-reviewed for scientific quality.
Topics include:
1. MATERIALS for renewable energy storage and conversion: Batteries, Supercapacitors, Fuel cells, Hydrogen storage, and Photovoltaics and solar cells.
2. MATERIALS for renewable and sustainable fuel production: Hydrogen production and fuel generation from renewables (catalysis), Solar-driven reactions to hydrogen and fuels from renewables (photocatalysis), Biofuels, and Carbon dioxide sequestration and conversion.
3. MATERIALS for energy saving: Thermoelectrics, Novel illumination sources for efficient lighting, and Energy saving in buildings.
4. MATERIALS modeling and theoretical aspects.
5. Advanced characterization techniques of MATERIALS
Materials for Renewable and Sustainable Energy is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies