Temperature Dependent Precipitation in Exact Nonlinear Mountain Waves

IF 1.2 3区 数学 Q2 MATHEMATICS, APPLIED
Tony Lyons, Jordan McCarney
{"title":"Temperature Dependent Precipitation in Exact Nonlinear Mountain Waves","authors":"Tony Lyons,&nbsp;Jordan McCarney","doi":"10.1007/s00021-025-00946-y","DOIUrl":null,"url":null,"abstract":"<div><p>Lagrangian variables are used to develop an explicit description of nonlinear mountain waves propagating in a moist atmosphere. This Lagrangian description is used to deduce an integral representation of the atmospheric pressure distribution in terms of the temperature within the laminar flow layer. Kirchoff’s equation is used to determine a temperature dependent enthalpy which together with the Clausius-Clapeyron equation is used to obtain an explicit expression for temperature and vapour pressure profiles in a saturated atmosphere where mountain waves are prominent. Precipitation rates are computed from the first law of thermodynamics and compare favourably with meteorological field data at Feldberg, a mountain in Germany. The second law of thermodynamics is used to show that there is a subregion near the tropopause at which precipitation is prohibited within the laminar flow.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"27 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-025-00946-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-025-00946-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Lagrangian variables are used to develop an explicit description of nonlinear mountain waves propagating in a moist atmosphere. This Lagrangian description is used to deduce an integral representation of the atmospheric pressure distribution in terms of the temperature within the laminar flow layer. Kirchoff’s equation is used to determine a temperature dependent enthalpy which together with the Clausius-Clapeyron equation is used to obtain an explicit expression for temperature and vapour pressure profiles in a saturated atmosphere where mountain waves are prominent. Precipitation rates are computed from the first law of thermodynamics and compare favourably with meteorological field data at Feldberg, a mountain in Germany. The second law of thermodynamics is used to show that there is a subregion near the tropopause at which precipitation is prohibited within the laminar flow.

精确非线性山波中的温度相关降水
利用拉格朗日变量建立了在潮湿大气中传播的非线性山波的显式描述。这种拉格朗日描述用于推导层流层内温度对大气压力分布的积分表示。基尔霍夫方程用于确定温度相关焓,该焓与克劳usius- clapeyron方程一起用于获得饱和大气中山波突出的温度和蒸汽压力剖面的显式表达式。降水率是根据热力学第一定律计算的,与德国费尔德伯格山的气象现场数据比较有利。热力学第二定律被用来证明在对流层顶附近有一个小区域,在该区域层流内不允许降水。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
15.40%
发文量
97
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信