High-temperature thermal stability and thermal conductivity of Al/AlN-C core-shell microencapsulated phase change material

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS
Jing Chen , Zhenhua Gu , Yu Chen , Zhiqiang Li , Yali Liu , Liangnuo Yang , Zheng Zhou , Yunfeng Wang , Qiongfen Yu , Ming Li
{"title":"High-temperature thermal stability and thermal conductivity of Al/AlN-C core-shell microencapsulated phase change material","authors":"Jing Chen ,&nbsp;Zhenhua Gu ,&nbsp;Yu Chen ,&nbsp;Zhiqiang Li ,&nbsp;Yali Liu ,&nbsp;Liangnuo Yang ,&nbsp;Zheng Zhou ,&nbsp;Yunfeng Wang ,&nbsp;Qiongfen Yu ,&nbsp;Ming Li","doi":"10.1016/j.solmat.2025.113745","DOIUrl":null,"url":null,"abstract":"<div><div>Core-shell phase change materials with high thermal storage and thermal conductivity have attracted significant attention in the development of solar thermal utilization technology. The selection and construction of shell materials are crucial for ensuring their excellent performance. In this study, Al/AlN-C composite shell microencapsulated phase change materials (MEPCMs) were prepared using metal Al as the phase change material, supplemented with melamine as a nitrogen and carbon source through low-temperature nitriding. During the reaction process, the melamine was pyrolyzed at different temperature stages to produce ammonia, carbon, and carbon-nitrogen compounds. Pyrolyzed ammonia facilitated the formation of an AlN shell while carbon and carbon-nitrogen compounds coated the surface of the core material to form an AlN-C composite shell. The Al@AlN-C exhibited excellent thermal energy storage capacity (293.68 J g<sup>−1</sup>) when prepared at 800 °C. After 100 melting-freezing cycles, the latent heat value of microcapsules decreases only 5.40 %, reaching 277.80 J g<sup>−1</sup>, indicating excellent thermal cycle stability. In addition, the microcapsules possess high thermal conductivity (25 °C, 7.45 W/(m·k)), showcasing their significant potential for utilization in high-temperature heat storage systems.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"290 ","pages":"Article 113745"},"PeriodicalIF":6.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825003460","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Core-shell phase change materials with high thermal storage and thermal conductivity have attracted significant attention in the development of solar thermal utilization technology. The selection and construction of shell materials are crucial for ensuring their excellent performance. In this study, Al/AlN-C composite shell microencapsulated phase change materials (MEPCMs) were prepared using metal Al as the phase change material, supplemented with melamine as a nitrogen and carbon source through low-temperature nitriding. During the reaction process, the melamine was pyrolyzed at different temperature stages to produce ammonia, carbon, and carbon-nitrogen compounds. Pyrolyzed ammonia facilitated the formation of an AlN shell while carbon and carbon-nitrogen compounds coated the surface of the core material to form an AlN-C composite shell. The Al@AlN-C exhibited excellent thermal energy storage capacity (293.68 J g−1) when prepared at 800 °C. After 100 melting-freezing cycles, the latent heat value of microcapsules decreases only 5.40 %, reaching 277.80 J g−1, indicating excellent thermal cycle stability. In addition, the microcapsules possess high thermal conductivity (25 °C, 7.45 W/(m·k)), showcasing their significant potential for utilization in high-temperature heat storage systems.
Al/AlN-C核壳微囊化相变材料的高温热稳定性和导热性能
具有高储热性和高导热性的核壳相变材料在太阳能热利用技术的发展中备受关注。壳体材料的选择和构造是保证其优良性能的关键。本研究以金属Al为相变材料,辅以三聚氰胺作为氮源和碳源,通过低温氮化制备了Al/AlN-C复合壳微胶囊化相变材料(MEPCMs)。在反应过程中,三聚氰胺在不同温度阶段被热解生成氨、碳和碳氮化合物。热解氨促进了AlN壳的形成,碳和碳氮化合物包覆在核心材料表面,形成AlN- c复合壳。在800℃下制备的Al@AlN-C具有优异的储热能力(293.68 J g−1)。经过100次融冻循环后,微胶囊的潜热值仅下降5.40%,达到277.80 J g−1,具有良好的热循环稳定性。此外,微胶囊具有高导热性(25°C, 7.45 W/(m·k)),显示了它们在高温储热系统中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信