{"title":"Exploring the Controlling Factors of Watershed Streamflow Variability Using Hydrological and Machine Learning Models","authors":"Bingbing Ding, Xinxiao Yu, Guodong Jia","doi":"10.1029/2024wr039734","DOIUrl":null,"url":null,"abstract":"Studying streamflow processes and controlling factors is crucial for sustainable water resource management. This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF), based on the input and output data from the Soil and Water Assessment Tool (SWAT) and comparing their streamflow simulation performances. The Shapley Additive exPlanations (SHAP) method identified the controlling factors and their interactions in streamflow variation, whereas scenario simulations quantified the relative contributions of climate and land use changes. The results showed that when integrated with the SWAT model, XGBoost demonstrated better streamflow simulation performance than RF. Among the key factors influencing streamflow variation, area was the most important, with precipitation having a stronger impact than temperature, positively affecting streamflow when exceeding 550 mm. Different land use types exerted nonlinear impacts on streamflow, with notable differences and threshold effects. Specifically, grassland, cropland, and forest positively contributed to streamflow when their proportions were below 50%, above 20%, and between 30% and 50%, respectively. Nonlinear interaction effects on streamflow between land use types resulted in positive or negative contributions at specific proportion thresholds. Furthermore, precipitation was not dominant in the interaction with land use. Streamflow changes were primarily driven by drastic land use changes, which contributed 55.71%, while climate change accounted for 44.27%. This integration of hydrological models with machine learning revealed the complex impacts of climate and land use changes on streamflow, offering scientific insights for watershed water resource management.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"21 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024wr039734","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Studying streamflow processes and controlling factors is crucial for sustainable water resource management. This study demonstrated the potential of integrating hydrological models with machine learning by constructing two machine learning methods, Extreme Gradient Boosting (XGBoost) and Random Forest (RF), based on the input and output data from the Soil and Water Assessment Tool (SWAT) and comparing their streamflow simulation performances. The Shapley Additive exPlanations (SHAP) method identified the controlling factors and their interactions in streamflow variation, whereas scenario simulations quantified the relative contributions of climate and land use changes. The results showed that when integrated with the SWAT model, XGBoost demonstrated better streamflow simulation performance than RF. Among the key factors influencing streamflow variation, area was the most important, with precipitation having a stronger impact than temperature, positively affecting streamflow when exceeding 550 mm. Different land use types exerted nonlinear impacts on streamflow, with notable differences and threshold effects. Specifically, grassland, cropland, and forest positively contributed to streamflow when their proportions were below 50%, above 20%, and between 30% and 50%, respectively. Nonlinear interaction effects on streamflow between land use types resulted in positive or negative contributions at specific proportion thresholds. Furthermore, precipitation was not dominant in the interaction with land use. Streamflow changes were primarily driven by drastic land use changes, which contributed 55.71%, while climate change accounted for 44.27%. This integration of hydrological models with machine learning revealed the complex impacts of climate and land use changes on streamflow, offering scientific insights for watershed water resource management.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.