Reconfigurable graded adaptive asymmetry-Schottky-barrier phototransistor for artificial visual system with zJ-energy record

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Honglin Song, Yanran Li, Shuo Liu, Xilong Zhou, Yu Zhou, Jie Jiang
{"title":"Reconfigurable graded adaptive asymmetry-Schottky-barrier phototransistor for artificial visual system with zJ-energy record","authors":"Honglin Song, Yanran Li, Shuo Liu, Xilong Zhou, Yu Zhou, Jie Jiang","doi":"10.1063/5.0257883","DOIUrl":null,"url":null,"abstract":"Visual perception, memory, and adaptation processes are critical functions in biological systems that enhance responsiveness, improve survival fitness, and reduce information redundancy in complex environments. Therefore, the development of adaptive bionic vision systems with high efficiency, low complexity, and minimal energy consumption has become a key objective. However, most adaptive devices suffer from either complex structures or non-reconfigurable functionalities, hindering the further application for bionic vision systems. Here, for the first time, an asymmetry-Schottky-barrier MoS2 phototransistor is demonstrated for reconfigurable visual system with visual selective memory and graded adaptation functions. More importantly, the device exhibits a new record with the ultra-low energy consumption of ∼90 zJ per synaptic event. Several important adaptive behaviors, such as the sensitivity, desensitization, accuracy, and self-recovery, are successfully realized and adjusted by asymmetry-Schottky-barriers. These results pave a new way toward the efficient, low-energy, and reconfigurable bionic visual systems for applications of machine vision, bionic robotics, and human-machine interfaces.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"45 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0257883","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Visual perception, memory, and adaptation processes are critical functions in biological systems that enhance responsiveness, improve survival fitness, and reduce information redundancy in complex environments. Therefore, the development of adaptive bionic vision systems with high efficiency, low complexity, and minimal energy consumption has become a key objective. However, most adaptive devices suffer from either complex structures or non-reconfigurable functionalities, hindering the further application for bionic vision systems. Here, for the first time, an asymmetry-Schottky-barrier MoS2 phototransistor is demonstrated for reconfigurable visual system with visual selective memory and graded adaptation functions. More importantly, the device exhibits a new record with the ultra-low energy consumption of ∼90 zJ per synaptic event. Several important adaptive behaviors, such as the sensitivity, desensitization, accuracy, and self-recovery, are successfully realized and adjusted by asymmetry-Schottky-barriers. These results pave a new way toward the efficient, low-energy, and reconfigurable bionic visual systems for applications of machine vision, bionic robotics, and human-machine interfaces.
具有zj能量记录的人工视觉系统的可重构梯度自适应非对称肖特基势垒光电晶体管
视觉感知、记忆和适应过程是生物系统在复杂环境中增强反应性、提高生存适应性和减少信息冗余的关键功能。因此,开发高效、低复杂度、低能耗的自适应仿生视觉系统已成为关键目标。然而,大多数自适应设备要么结构复杂,要么功能不可重构,阻碍了仿生视觉系统的进一步应用。本文首次为具有视觉选择记忆和梯度自适应功能的可重构视觉系统展示了非对称肖特基势垒MoS2光电晶体管。更重要的是,该器件以每个突触事件约90 zJ的超低能耗创下了新纪录。通过不对称肖特基势垒成功地实现和调节了灵敏度、脱敏、精度和自恢复等重要的自适应行为。这些结果为高效、低能耗、可重构的仿生视觉系统在机器视觉、仿生机器人、人机界面等领域的应用开辟了新的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信