{"title":"Inverse design of metal-organic frameworks using deep dreaming approaches","authors":"Conor Cleeton, Lev Sarkisov","doi":"10.1038/s41467-025-59952-3","DOIUrl":null,"url":null,"abstract":"<p>Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"41 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-59952-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Exploring the expansive and largely untapped chemical space of metal-organic frameworks (MOFs) holds promise for revolutionising the field of materials science. MOFs, hailed for their modular architecture, offer unmatched flexibility in customising functionalities to meet specific application needs. However, navigating this chemical space to identify optimal MOF structures poses a significant challenge. Traditional high-throughput computational screening (HTCS), while useful, is often limited by a distribution bias towards materials not aligned with the desired functionalities. To overcome these limitations, this study adopts a “deep dreaming” methodology to optimise MOFs in silico, aiming to generate structures with systematically shifted properties that are closer to target functionalities from the outset. Our approach integrates property prediction and structure optimisation within a single interpretable framework, leveraging a specialised chemical language model augmented with attention mechanisms. Focusing on a curated set of MOF properties critical to applications like carbon capture and energy storage, we demonstrate how deep dreaming can be utilised as a tool for targeted material design.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.