An electrochemically driven hybrid interphase enabling stable versatile zinc metal electrodes for aqueous zinc batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Dingtao Ma, Fan Li, Kefeng Ouyang, Qiuting Chen, Jinlai Zhao, Minfeng Chen, Ming Yang, Yanyi Wang, Jizhang Chen, Hongwei Mi, Chuanxin He, Peixin Zhang
{"title":"An electrochemically driven hybrid interphase enabling stable versatile zinc metal electrodes for aqueous zinc batteries","authors":"Dingtao Ma, Fan Li, Kefeng Ouyang, Qiuting Chen, Jinlai Zhao, Minfeng Chen, Ming Yang, Yanyi Wang, Jizhang Chen, Hongwei Mi, Chuanxin He, Peixin Zhang","doi":"10.1038/s41467-025-60190-w","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn ion batteries are advantageous in terms of safety and cost, while their sustainable applications are usually impeded by dendrite growth and interfacial side reactions. Here, we present the development of an electrochemically driven artificial solid-state electrolyte interphase, utilizing a metal surface coupling agent phosphate ester as a protective layer for Zn negative electrodes. Upon cycling, the protective layer in situ transforms into a hybrid phase enriched with well dispersed Zn<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> nanocrystals. This transformation ensures a uniform Zn<sup>2+</sup> flux, effectively suppresses dendrite growth, and mitigates side reactions. In addition, such protective layer ensures Zn electrode stable plating/stripping performance for 1500 h at 10 mA cm<sup>−2</sup> and 1 mAh cm<sup>−2</sup>, while pouch cells coupled with NaV<sub>3</sub>O<sub>8</sub>·1.5H<sub>2</sub>O deliver ampere-hour level capacity. Beyond that, its robust adhesion and flexibility enable the Zn electrode to maintain good performance under a variety of harsh conditions. This approach provides valuable insights into the advancement of Zn metal batteries.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"131 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-60190-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn ion batteries are advantageous in terms of safety and cost, while their sustainable applications are usually impeded by dendrite growth and interfacial side reactions. Here, we present the development of an electrochemically driven artificial solid-state electrolyte interphase, utilizing a metal surface coupling agent phosphate ester as a protective layer for Zn negative electrodes. Upon cycling, the protective layer in situ transforms into a hybrid phase enriched with well dispersed Zn3(PO4)2 nanocrystals. This transformation ensures a uniform Zn2+ flux, effectively suppresses dendrite growth, and mitigates side reactions. In addition, such protective layer ensures Zn electrode stable plating/stripping performance for 1500 h at 10 mA cm−2 and 1 mAh cm−2, while pouch cells coupled with NaV3O8·1.5H2O deliver ampere-hour level capacity. Beyond that, its robust adhesion and flexibility enable the Zn electrode to maintain good performance under a variety of harsh conditions. This approach provides valuable insights into the advancement of Zn metal batteries.

Abstract Image

一种电化学驱动的混合相,可用于水锌电池的稳定的多功能锌金属电极
水性锌离子电池在安全性和成本方面具有优势,但其可持续应用通常受到枝晶生长和界面副反应的阻碍。在这里,我们提出了一种电化学驱动的人工固态电解质界面的发展,利用金属表面偶联剂磷酸酯作为锌负极的保护层。循环后,原位保护层转变为富含分散良好的Zn3(PO4)2纳米晶的杂化相。这种转变确保了均匀的Zn2+通量,有效地抑制了枝晶的生长,并减轻了副反应。此外,这种保护层可确保锌电极在10 mA cm - 2和1 mAh cm - 2下稳定地镀/剥离1500小时,而与NaV3O8·1.5H2O耦合的袋状电池可提供安培小时级容量。除此之外,其强大的附着力和柔韧性使锌电极在各种恶劣条件下保持良好的性能。这种方法为锌金属电池的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信