Vitaliy B Borisov, Giorgio Giardina, Gianluca Pistoia, Elena Forte
{"title":"Cytochrome bd-type oxidases and environmental stressors in microbial physiology.","authors":"Vitaliy B Borisov, Giorgio Giardina, Gianluca Pistoia, Elena Forte","doi":"10.1016/bs.ampbs.2024.05.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.</p>","PeriodicalId":519928,"journal":{"name":"Advances in microbial physiology","volume":"86 ","pages":"199-255"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in microbial physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/bs.ampbs.2024.05.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cytochrome bd is a tri-haem copper-free terminal oxidase of many respiratory chains of prokaryotes with unique structural and functional characteristics. As the other membrane-bound terminal oxidases, this enzyme couples the four-electron reduction of oxygen to water with the generation of a proton motive force used for ATP synthesis but the molecular mechanism does not include proton pumping. Beyond its bioenergetic role, cytochrome bd is involved in resistance to several stressors and affords protection against oxidative and nitrosative stress. These features agree with its expression in many bacterial pathogens. The importance for bacterial virulence and the absence of eukaryotic homologues make this enzyme an ideal target for new antimicrobial drugs. This review aims to provide an update on the current knowledge about cytochrome bd in light of recent advances in the structural characterisation of this enzyme, focussing on its reactivity with environmental stressors.