James I. Raeside , Heather L. Christie , Tracey Chenier , Dyanne Brewer , Armen Charchoglyan
{"title":"Confirmation of a novel, stable estrogen metabolite, as 5a,6a-epoxy-estrone sulfate in stallion blood by LC-MS/MS","authors":"James I. Raeside , Heather L. Christie , Tracey Chenier , Dyanne Brewer , Armen Charchoglyan","doi":"10.1016/j.jsbmb.2025.106788","DOIUrl":null,"url":null,"abstract":"<div><div>Mass spectrometry (MS) has become pivotal for accurately delineating intricate molecular structures for steroids present in minute quantities within biological samples. This study utilized liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) to identify and characterize a ‘new’ estrogen metabolite, 5α,6α-epoxy-estrone sulfate, in stallion serum from three animals. The estrogen structure was predicted previously using radiolabeled steroids. HRMS/MS, in combination with a seamless sample preparation involving liquid-liquid extraction and chromatographic separation, enabled accurate mass spectrometric identification of the target metabolite. A distinct chromatographic peak corresponding to the metabolite displayed a fragmentation pattern consistent with its predicted structure. Fragment ions at <em>m/z</em> 79.9 and 285.1 resulting from precursor ion <em>m/z</em> 365.5 [M-H]<sup><strong>-</strong></sup> suggested the presence of a sulfated group and epoxy form of estrone, with an additional oxygen atom when compared with those for a reference standard of estrone sulfate. The assignment of other fragment ions from the target ion further elucidated the predicted structure. Evidence for a structure unique from any other estrogen metabolite on record was demonstrated on two different LC-QTOF instruments. Its identification in the blood circulation ensures distribution throughout the body. The potential significance for future physiological/pathological investigations is discussed.</div></div>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":"252 ","pages":"Article 106788"},"PeriodicalIF":2.7000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960076025001165","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mass spectrometry (MS) has become pivotal for accurately delineating intricate molecular structures for steroids present in minute quantities within biological samples. This study utilized liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS) to identify and characterize a ‘new’ estrogen metabolite, 5α,6α-epoxy-estrone sulfate, in stallion serum from three animals. The estrogen structure was predicted previously using radiolabeled steroids. HRMS/MS, in combination with a seamless sample preparation involving liquid-liquid extraction and chromatographic separation, enabled accurate mass spectrometric identification of the target metabolite. A distinct chromatographic peak corresponding to the metabolite displayed a fragmentation pattern consistent with its predicted structure. Fragment ions at m/z 79.9 and 285.1 resulting from precursor ion m/z 365.5 [M-H]- suggested the presence of a sulfated group and epoxy form of estrone, with an additional oxygen atom when compared with those for a reference standard of estrone sulfate. The assignment of other fragment ions from the target ion further elucidated the predicted structure. Evidence for a structure unique from any other estrogen metabolite on record was demonstrated on two different LC-QTOF instruments. Its identification in the blood circulation ensures distribution throughout the body. The potential significance for future physiological/pathological investigations is discussed.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.