Evaluating methods for the prediction of cell-type-specific enhancers in the mammalian cortex.

IF 11.1 Q1 CELL BIOLOGY
Nelson J Johansen, Niklas Kempynck, Nathan R Zemke, Saroja Somasundaram, Seppe De Winter, Marcus Hooper, Deepanjali Dwivedi, Ruchi Lohia, Fabien Wehbe, Bocheng Li, Darina Abaffyová, Ethan J Armand, Julie De Man, Eren Can Ekşi, Nikolai Hecker, Gert Hulselmans, Vasilis Konstantakos, David Mauduit, John K Mich, Gabriele Partel, Tanya L Daigle, Boaz P Levi, Kai Zhang, Yoshiaki Tanaka, Jesse Gillis, Jonathan T Ting, Yoav Ben-Simon, Jeremy Miller, Joseph R Ecker, Bing Ren, Stein Aerts, Ed S Lein, Bosiljka Tasic, Trygve E Bakken
{"title":"Evaluating methods for the prediction of cell-type-specific enhancers in the mammalian cortex.","authors":"Nelson J Johansen, Niklas Kempynck, Nathan R Zemke, Saroja Somasundaram, Seppe De Winter, Marcus Hooper, Deepanjali Dwivedi, Ruchi Lohia, Fabien Wehbe, Bocheng Li, Darina Abaffyová, Ethan J Armand, Julie De Man, Eren Can Ekşi, Nikolai Hecker, Gert Hulselmans, Vasilis Konstantakos, David Mauduit, John K Mich, Gabriele Partel, Tanya L Daigle, Boaz P Levi, Kai Zhang, Yoshiaki Tanaka, Jesse Gillis, Jonathan T Ting, Yoav Ben-Simon, Jeremy Miller, Joseph R Ecker, Bing Ren, Stein Aerts, Ed S Lein, Bosiljka Tasic, Trygve E Bakken","doi":"10.1016/j.xgen.2025.100879","DOIUrl":null,"url":null,"abstract":"<p><p>Identifying cell-type-specific enhancers is critical for developing genetic tools to study the mammalian brain. We organized the \"Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics\" to evaluate machine learning and feature-based methods for nominating enhancer sequences targeting mouse cortical cell types. Methods were assessed using in vivo data from hundreds of adeno-associated virus (AAV)-packaged, retro-orbitally delivered enhancers. Open chromatin was the strongest predictor of functional enhancers, while sequence models improved prediction of non-functional enhancers and identified cell-type-specific transcription factor codes to inform in silico enhancer design. This challenge establishes a benchmark for enhancer prioritization and highlights computational and molecular features critical for identifying functional cortical enhancers, advancing efforts to map and manipulate gene regulation in the mammalian cortex.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100879"},"PeriodicalIF":11.1000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Identifying cell-type-specific enhancers is critical for developing genetic tools to study the mammalian brain. We organized the "Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics" to evaluate machine learning and feature-based methods for nominating enhancer sequences targeting mouse cortical cell types. Methods were assessed using in vivo data from hundreds of adeno-associated virus (AAV)-packaged, retro-orbitally delivered enhancers. Open chromatin was the strongest predictor of functional enhancers, while sequence models improved prediction of non-functional enhancers and identified cell-type-specific transcription factor codes to inform in silico enhancer design. This challenge establishes a benchmark for enhancer prioritization and highlights computational and molecular features critical for identifying functional cortical enhancers, advancing efforts to map and manipulate gene regulation in the mammalian cortex.

预测哺乳动物皮质细胞类型特异性增强子的评估方法。
识别细胞类型特异性增强子对于开发研究哺乳动物大脑的遗传工具至关重要。我们组织了“脑倡议细胞普查网络(BICCN)挑战:从跨物种多组学预测功能性细胞类型特异性增强子”,以评估机器学习和基于特征的方法来提名针对小鼠皮质细胞类型的增强子序列。使用数百种腺相关病毒(AAV)包装、后轨道递送增强子的体内数据对方法进行评估。开放染色质是功能增强子的最强预测因子,而序列模型改进了对非功能增强子的预测,并鉴定了细胞类型特异性转录因子代码,为硅增强子设计提供信息。这一挑战建立了增强子优先级的基准,并强调了对识别功能性皮质增强子至关重要的计算和分子特征,推进了在哺乳动物皮质中绘制和操纵基因调控的努力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信