Dong-Woo Kim, Hyun-Jun Lee, Ki Beom Kim, Sung-Hun Kim, Seong-Sik Kim, Soo-Byung Park, Youn-Kyung Choi, Yong-Il Kim
{"title":"Force and moment analysis of clear aligners: Impact of material properties and design on premolar rotation.","authors":"Dong-Woo Kim, Hyun-Jun Lee, Ki Beom Kim, Sung-Hun Kim, Seong-Sik Kim, Soo-Byung Park, Youn-Kyung Choi, Yong-Il Kim","doi":"10.4041/kjod24.114","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To quantitatively analyze and compare the forces and moments generated by thermoformed polyethylene terephthalate glycol (PETG) and direct-printed TC-85 clear aligners (CAs), with various margin designs, during premolar rotation.</p><p><strong>Methods: </strong>In total, 132 CAs were fabricated and divided into four groups (n = 33 per group). Group C consisted of thermoformed PETG aligners with a 2 mm gingival margin. Group E comprised direct-printed TC-85 aligners with equi-gingival margin, whereas Group G utilized direct-printed TC-85 aligners with 2 mm gingival margins. Finally, Group T featured direct-printed TC-85 aligners with an additional 1 mm thickness at the mesial embrasure. The forces and moments were measured using a 6-axis force/moment transducer at 2°, 3°, and 4° of rotation. All measurements were conducted at 37°C to simulate intraoral conditions. Forces were measured in the buccolingual, anteroposterior, and vertical directions, while moments were measured in the mesiodistal, buccolingual, and rotational planes.</p><p><strong>Results: </strong>The PETG aligners (Group C) showed significantly increased buccal and posterior force across the rotation angles (<i>P</i> < 0.05), whereas the intrusive force remained consistent. In contrast, the TC-85 aligners maintained consistent forces across all rotation angles. Direct-printed aligners demonstrated significantly lower intrusive forces than PETG aligners (<i>P</i> < 0.001). Group T exhibited reduced unwanted forces while maintaining effective rotational moments. Furthermore, all direct-printed aligners showed more predictable force delivery patterns than thermoformed aligners.</p><p><strong>Conclusions: </strong>Direct-printed TC-85 aligners demonstrated superior force consistency and reduced unwanted side effects compared with traditional PETG aligners. Although marginal design modifications did not significantly improve rotational efficiency, they effectively reduced unwanted intrusive forces.</p>","PeriodicalId":51260,"journal":{"name":"Korean Journal of Orthodontics","volume":"55 3","pages":"212-223"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12100335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Korean Journal of Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4041/kjod24.114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To quantitatively analyze and compare the forces and moments generated by thermoformed polyethylene terephthalate glycol (PETG) and direct-printed TC-85 clear aligners (CAs), with various margin designs, during premolar rotation.
Methods: In total, 132 CAs were fabricated and divided into four groups (n = 33 per group). Group C consisted of thermoformed PETG aligners with a 2 mm gingival margin. Group E comprised direct-printed TC-85 aligners with equi-gingival margin, whereas Group G utilized direct-printed TC-85 aligners with 2 mm gingival margins. Finally, Group T featured direct-printed TC-85 aligners with an additional 1 mm thickness at the mesial embrasure. The forces and moments were measured using a 6-axis force/moment transducer at 2°, 3°, and 4° of rotation. All measurements were conducted at 37°C to simulate intraoral conditions. Forces were measured in the buccolingual, anteroposterior, and vertical directions, while moments were measured in the mesiodistal, buccolingual, and rotational planes.
Results: The PETG aligners (Group C) showed significantly increased buccal and posterior force across the rotation angles (P < 0.05), whereas the intrusive force remained consistent. In contrast, the TC-85 aligners maintained consistent forces across all rotation angles. Direct-printed aligners demonstrated significantly lower intrusive forces than PETG aligners (P < 0.001). Group T exhibited reduced unwanted forces while maintaining effective rotational moments. Furthermore, all direct-printed aligners showed more predictable force delivery patterns than thermoformed aligners.
Conclusions: Direct-printed TC-85 aligners demonstrated superior force consistency and reduced unwanted side effects compared with traditional PETG aligners. Although marginal design modifications did not significantly improve rotational efficiency, they effectively reduced unwanted intrusive forces.
期刊介绍:
The Korean Journal of Orthodontics (KJO) is an international, open access, peer reviewed journal published in January, March, May, July, September, and November each year. It was first launched in 1970 and, as the official scientific publication of Korean Association of Orthodontists, KJO aims to publish high quality clinical and scientific original research papers in all areas related to orthodontics and dentofacial orthopedics. Specifically, its interest focuses on evidence-based investigations of contemporary diagnostic procedures and treatment techniques, expanding to significant clinical reports of diverse treatment approaches.
The scope of KJO covers all areas of orthodontics and dentofacial orthopedics including successful diagnostic procedures and treatment planning, growth and development of the face and its clinical implications, appliance designs, biomechanics, TMJ disorders and adult treatment. Specifically, its latest interest focuses on skeletal anchorage devices, orthodontic appliance and biomaterials, 3 dimensional imaging techniques utilized for dentofacial diagnosis and treatment planning, and orthognathic surgery to correct skeletal disharmony in association of orthodontic treatment.