Investigating network structures in recurrent event data with discrete observation times.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Yufeng Xia, Yangkuo Li, Xiaobing Zhao, Xuan Xu
{"title":"Investigating network structures in recurrent event data with discrete observation times.","authors":"Yufeng Xia, Yangkuo Li, Xiaobing Zhao, Xuan Xu","doi":"10.1007/s10985-025-09656-z","DOIUrl":null,"url":null,"abstract":"<p><p>To investigate pairwise interactions arising from recurrent event processes in a longitudinal network, the framework of the stochastic block model is followed, where every node belongs to a latent group and interactions between node pairs from two specified groups follow a conditional nonhomogeneous Poisson process. Our focus lies on discrete observation times, which are commonly encountered in reality for cost-saving purposes. The variational EM algorithm and variational maximum likelihood estimation are applied for statistical inference. A specific method based on the defined distribution function F and self-consistency algorithm for recurrent events is used when estimating the intensity functions of edges. Numerical simulations illustrate the performance of our proposed estimation procedure in uncovering the underlying structure in the longitudinal networks with recurrent event processes. The dataset of interactions between French schoolchildren for influenza monitoring is analyzed.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-025-09656-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To investigate pairwise interactions arising from recurrent event processes in a longitudinal network, the framework of the stochastic block model is followed, where every node belongs to a latent group and interactions between node pairs from two specified groups follow a conditional nonhomogeneous Poisson process. Our focus lies on discrete observation times, which are commonly encountered in reality for cost-saving purposes. The variational EM algorithm and variational maximum likelihood estimation are applied for statistical inference. A specific method based on the defined distribution function F and self-consistency algorithm for recurrent events is used when estimating the intensity functions of edges. Numerical simulations illustrate the performance of our proposed estimation procedure in uncovering the underlying structure in the longitudinal networks with recurrent event processes. The dataset of interactions between French schoolchildren for influenza monitoring is analyzed.

研究具有离散观测时间的循环事件数据中的网络结构。
为了研究纵向网络中由循环事件过程产生的成对相互作用,遵循随机块模型的框架,其中每个节点属于一个潜在组,来自两个指定组的节点对之间的相互作用遵循条件非齐次泊松过程。我们的重点在于离散观察时间,这在现实中经常遇到,以节省成本为目的。采用变分EM算法和变分极大似然估计进行统计推理。在估计边缘强度函数时,采用了一种基于定义分布函数F和循环事件自洽算法的具体方法。数值模拟说明了我们提出的估计方法在揭示具有循环事件过程的纵向网络的底层结构方面的性能。分析了法国小学生流感监测互动数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信