On the Use of Elbow Plot Method for Class Enumeration in Factor Mixture Models.

IF 1 4区 心理学 Q4 PSYCHOLOGY, MATHEMATICAL
Sedat Sen, Allan S Cohen
{"title":"On the Use of Elbow Plot Method for Class Enumeration in Factor Mixture Models.","authors":"Sedat Sen, Allan S Cohen","doi":"10.1177/01466216251344288","DOIUrl":null,"url":null,"abstract":"<p><p>Application of factor mixture models (FMMs) requires determining the correct number of latent classes. A number of studies have examined the performance of several information criterion (IC) indices, but as yet none have studied the effectiveness of the elbow plot method. In this study, therefore, the effectiveness of the elbow plot method was compared with the lowest value criterion and the difference method calculated from five commonly used IC indices. Results of a simulation study showed the elbow plot method to detect the generating model at least 90% of the time for two- and three-class FMMs. Results also showed the elbow plot method did not perform well for two-factor and four-class conditions. The performance of the elbow plot method was generally better than that of the lowest IC value criterion and difference method under two- and three-class conditions. For the four-latent class conditions, there were no meaningful differences between the results of the elbow plot method and the lowest value criterion method. On the other hand, the difference method outperformed the other two methods in conditions with two factors and four classes.</p>","PeriodicalId":48300,"journal":{"name":"Applied Psychological Measurement","volume":" ","pages":"01466216251344288"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12092417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/01466216251344288","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PSYCHOLOGY, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Application of factor mixture models (FMMs) requires determining the correct number of latent classes. A number of studies have examined the performance of several information criterion (IC) indices, but as yet none have studied the effectiveness of the elbow plot method. In this study, therefore, the effectiveness of the elbow plot method was compared with the lowest value criterion and the difference method calculated from five commonly used IC indices. Results of a simulation study showed the elbow plot method to detect the generating model at least 90% of the time for two- and three-class FMMs. Results also showed the elbow plot method did not perform well for two-factor and four-class conditions. The performance of the elbow plot method was generally better than that of the lowest IC value criterion and difference method under two- and three-class conditions. For the four-latent class conditions, there were no meaningful differences between the results of the elbow plot method and the lowest value criterion method. On the other hand, the difference method outperformed the other two methods in conditions with two factors and four classes.

用弯头图法进行因子混合模型的类枚举。
因子混合模型(fmm)的应用需要确定潜在类别的正确数量。许多研究已经检查了几个信息标准(IC)指数的性能,但迄今为止还没有研究肘形图方法的有效性。因此,本研究将肘形图法与最低值准则和五种常用IC指数计算的差值法的有效性进行了比较。仿真研究结果表明,对于二级和三级fmm,弯头图方法至少有90%的时间可以检测出生成模型。结果还表明,肘部图法在双因素和四类条件下表现不佳。在二级和三级条件下,肘形图法的性能普遍优于最低IC值判据法和差分法。对于四潜分类条件,肘形图法和最低值标准法的结果没有显著差异。另一方面,在两因素四类条件下,差分法优于其他两种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
8.30%
发文量
50
期刊介绍: Applied Psychological Measurement publishes empirical research on the application of techniques of psychological measurement to substantive problems in all areas of psychology and related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信