Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing.

IF 3.7 2区 生物学 Q1 GENETICS & HEREDITY
PLoS Genetics Pub Date : 2025-05-22 eCollection Date: 2025-05-01 DOI:10.1371/journal.pgen.1011667
Amy Longtin, Marina M Watowich, Baptiste Sadoughi, Rachel M Petersen, Sarah F Brosnan, Kenneth Buetow, Qiuyin Cai, Michael D Gurven, James P Higham, Heather M Highland, Yi-Ting Huang, Hillard Kaplan, Thomas S Kraft, Yvonne A L Lim, Jirong Long, Amanda D Melin, Michael J Montague, Jamie Roberson, Kee Seong Ng, Michael L Platt, India A Schneider-Crease, Jonathan Stieglitz, Benjamin C Trumble, Vivek V Venkataraman, Ian J Wallace, Jie Wu, Noah Snyder-Mackler, Angela Jones, Alexander G Bick, Amanda J Lea
{"title":"Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing.","authors":"Amy Longtin, Marina M Watowich, Baptiste Sadoughi, Rachel M Petersen, Sarah F Brosnan, Kenneth Buetow, Qiuyin Cai, Michael D Gurven, James P Higham, Heather M Highland, Yi-Ting Huang, Hillard Kaplan, Thomas S Kraft, Yvonne A L Lim, Jirong Long, Amanda D Melin, Michael J Montague, Jamie Roberson, Kee Seong Ng, Michael L Platt, India A Schneider-Crease, Jonathan Stieglitz, Benjamin C Trumble, Vivek V Venkataraman, Ian J Wallace, Jie Wu, Noah Snyder-Mackler, Angela Jones, Alexander G Bick, Amanda J Lea","doi":"10.1371/journal.pgen.1011667","DOIUrl":null,"url":null,"abstract":"<p><p>Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)-which profiles ~4 million CpG sites-for miniaturization, flexibility, and multispecies use. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 5","pages":"e1011667"},"PeriodicalIF":3.7000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162101/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011667","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)-which profiles ~4 million CpG sites-for miniaturization, flexibility, and multispecies use. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.

高通量酶促DNA甲基化测序的高性价比解决方案。
表征DNA甲基化模式对于解决进化生物学、发育、老年科学和医学基因组学中的关键问题非常重要。虽然成本正在下降,但对于大多数人群规模的研究来说,全基因组DNA甲基化分析仍然过于昂贵,这就需要具有成本效益的、减少代表性的方法(即,依靠微阵列、酶消化或序列捕获来靶向基因组子集的分析)。大多数常见的全基因组和还原技术依赖于亚硫酸氢盐转化,这可能会破坏DNA,导致DNA丢失和测序偏差。最近提出了酶甲基测序(EM-seq)来克服这些问题,但EM-seq结合成本效益,减少表征策略的全面基准测试目前缺乏。为了解决这一差距,我们优化了靶向甲基化测序方案(TMS),该方案可分析约400万个CpG位点,用于小型化,灵活性和多物种使用,成本约为80美元。首先,我们测试了提高吞吐量和降低成本的改进方法,包括增加多路复用,减少DNA输入,以及使用酶而不是机械断裂来制备DNA。其次,我们将优化的TMS方案与常用的技术进行了比较,特别是Infinium MethylationEPIC BeadChip (n = 55对样本)和亚硫酸氢盐全基因组测序(n = 6对样本)。在这两种情况下,我们发现技术之间的一致性很强(R2分别= 0.97和0.99)。第三,我们在3种非人类灵长类动物(恒河猴、狒狒和卷尾猴)上测试了优化后的TMS方案。我们捕获了高比例(平均= 77.1%)的目标CpG位点,并产生了甲基化水平估计,与亚硫酸氢盐还原测序结果一致(R2 = 0.98)。最后,我们证实了1)表观遗传年龄和2)组织特异性DNA甲基化模式的估计是用TMS和其他技术产生的数据强烈概括的。总之,我们优化的TMS方案将使人类和非人类灵长类物种的全基因组DNA甲基化水平的具有成本效益的群体规模研究成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信