Livia Alvarenga, Marcia Ribeiro, Ludmila F M F Cardozo, Natália A Borges, Peter Stenvinkel, Denise Mafra
{"title":"The Exposome and the Kidney: A Silent Dialogue Shaping Chronic Kidney Disease.","authors":"Livia Alvarenga, Marcia Ribeiro, Ludmila F M F Cardozo, Natália A Borges, Peter Stenvinkel, Denise Mafra","doi":"10.3390/jox15030073","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic predisposition accounts for less than 20% of the global disease burden, highlighting the substantial role of environmental factors in health outcomes. In chronic kidney disease (CKD), a growing global prevalence, understanding the interplay between genes and the environment is crucial. Emerging research in the exposome and genome underscores how environmental exposures interact with genetic variants to influence the development and progression of CKD. The term \"exposome\" encompasses a variety of factors, including personal behaviors like smoking, a sedentary lifestyle, and making specific dietary choices (such as consuming ultra-processed foods, sugar, or fat). It also includes broader determinants such as pesticides, air, water, and soil pollution, nanoplastics, global warming, stressful life events, and socioeconomic status. Research on the exposome significantly increases our understanding of toxicological processes and individual variations in susceptibility to environmental stressors. This narrative review aims to explore the exposome associated with CKD, highlight key environmental exposures in its development, and discuss potential preventive and therapeutic strategies informed by these exposure-related factors.</p>","PeriodicalId":42356,"journal":{"name":"Journal of Xenobiotics","volume":"15 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101341/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Xenobiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jox15030073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Genetic predisposition accounts for less than 20% of the global disease burden, highlighting the substantial role of environmental factors in health outcomes. In chronic kidney disease (CKD), a growing global prevalence, understanding the interplay between genes and the environment is crucial. Emerging research in the exposome and genome underscores how environmental exposures interact with genetic variants to influence the development and progression of CKD. The term "exposome" encompasses a variety of factors, including personal behaviors like smoking, a sedentary lifestyle, and making specific dietary choices (such as consuming ultra-processed foods, sugar, or fat). It also includes broader determinants such as pesticides, air, water, and soil pollution, nanoplastics, global warming, stressful life events, and socioeconomic status. Research on the exposome significantly increases our understanding of toxicological processes and individual variations in susceptibility to environmental stressors. This narrative review aims to explore the exposome associated with CKD, highlight key environmental exposures in its development, and discuss potential preventive and therapeutic strategies informed by these exposure-related factors.
期刊介绍:
The Journal of Xenobiotics publishes original studies concerning the beneficial (pharmacology) and detrimental effects (toxicology) of xenobiotics in all organisms. A xenobiotic (“stranger to life”) is defined as a chemical that is not usually found at significant concentrations or expected to reside for long periods in organisms. In addition to man-made chemicals, natural products could also be of interest if they have potent biological properties, special medicinal properties or that a given organism is at risk of exposure in the environment. Topics dealing with abiotic- and biotic-based transformations in various media (xenobiochemistry) and environmental toxicology are also of interest. Areas of interests include the identification of key physical and chemical properties of molecules that predict biological effects and persistence in the environment; the molecular mode of action of xenobiotics; biochemical and physiological interactions leading to change in organism health; pathophysiological interactions of natural and synthetic chemicals; development of biochemical indicators including new “-omics” approaches to identify biomarkers of exposure or effects for xenobiotics.