Mannitol-facilitated entry of vancomycin into the central nervous system inhibits neuroinflammation in a rat model of MRSA intracranial infection by modulating brain endothelial cells.
{"title":"Mannitol-facilitated entry of vancomycin into the central nervous system inhibits neuroinflammation in a rat model of MRSA intracranial infection by modulating brain endothelial cells.","authors":"Yin Wen, Zhiwei Su, Huishan Zhu, Mengting Liu, Zhuo Li, Shiying Zhang, Shuangming Cai, Jiaqi Tang, Hongguang Ding, Hongke Zeng","doi":"10.5847/wjem.j.1920-8642.2025.057","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The present study aims to investigate whether mannitol facilitates central nervous system (CNS) entry of vancomycin and alleviates methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) intracranial infection.</p><p><strong>Methods: </strong>Blood-brain barrier (BBB) permeability was assessed by measuring the concentration of sodium fluorescein (NaF) in the brain tissues of rats and fluorescein isothiocyanate-dextran (FITC-dextran) in a single-cell layer model. Neutrophil infiltration in the brain tissue, inflammatory cytokine levels in the serum, neurological function, and 7-day survival rates were used to evaluate therapeutic effects of mannitol and vancomycin in MRSA-infected rats. Syndecan-1 and filamentous actin (F-actin) levels were measured, and the relationship between F-actin and the endothelial glycocalyx layer (EGL) was explored via the depolymerization agent cytochalasin D and the polymerization agent jasplakinolide.</p><p><strong>Results: </strong>Following mannitol administration, the NaF and vancomycin concentrations in the brain tissue increased rapidly within 5 min and remained stable for 30 min, indicating that mannitol increased BBB permeability for 30 min. <i>In vitro</i>, mannitol treatment led to significantly greater FITC-dextran permeation through a single-cell layer compared to controls. In the MRSA intracranial infection model, rats treated with mannitol and vancomycin simultaneously presented less inflammation, improved neurological function, and increased 7-day survival rate compared to rats treated with vancomycin and mannitol at 10-hour intervals. Further experiments revealed that mannitol decreased the expression of syndecan-1 in brain tissues, which was confirmed by <i>in vitro</i> experiments showing that mannitol significantly decreased syndecan-1 via F-actin depolymerization.</p><p><strong>Conclusion: </strong>Mannitol may enhance the therapeutic efficacy of vancomycin against intracranial MRSA infection by decreasing the endothelial glycocalyx of the BBB via F-actin depolymerization.</p>","PeriodicalId":23685,"journal":{"name":"World journal of emergency medicine","volume":"16 3","pages":"239-247"},"PeriodicalIF":2.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12093437/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of emergency medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5847/wjem.j.1920-8642.2025.057","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EMERGENCY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The present study aims to investigate whether mannitol facilitates central nervous system (CNS) entry of vancomycin and alleviates methicillin-resistant Staphylococcus aureus (MRSA) intracranial infection.
Methods: Blood-brain barrier (BBB) permeability was assessed by measuring the concentration of sodium fluorescein (NaF) in the brain tissues of rats and fluorescein isothiocyanate-dextran (FITC-dextran) in a single-cell layer model. Neutrophil infiltration in the brain tissue, inflammatory cytokine levels in the serum, neurological function, and 7-day survival rates were used to evaluate therapeutic effects of mannitol and vancomycin in MRSA-infected rats. Syndecan-1 and filamentous actin (F-actin) levels were measured, and the relationship between F-actin and the endothelial glycocalyx layer (EGL) was explored via the depolymerization agent cytochalasin D and the polymerization agent jasplakinolide.
Results: Following mannitol administration, the NaF and vancomycin concentrations in the brain tissue increased rapidly within 5 min and remained stable for 30 min, indicating that mannitol increased BBB permeability for 30 min. In vitro, mannitol treatment led to significantly greater FITC-dextran permeation through a single-cell layer compared to controls. In the MRSA intracranial infection model, rats treated with mannitol and vancomycin simultaneously presented less inflammation, improved neurological function, and increased 7-day survival rate compared to rats treated with vancomycin and mannitol at 10-hour intervals. Further experiments revealed that mannitol decreased the expression of syndecan-1 in brain tissues, which was confirmed by in vitro experiments showing that mannitol significantly decreased syndecan-1 via F-actin depolymerization.
Conclusion: Mannitol may enhance the therapeutic efficacy of vancomycin against intracranial MRSA infection by decreasing the endothelial glycocalyx of the BBB via F-actin depolymerization.
期刊介绍:
The journal will cover technical, clinical and bioengineering studies related to multidisciplinary specialties of emergency medicine, such as cardiopulmonary resuscitation, acute injury, out-of-hospital emergency medical service, intensive care, injury and disease prevention, disaster management, healthy policy and ethics, toxicology, and sudden illness, including cardiology, internal medicine, anesthesiology, orthopedics, and trauma care, and more. The journal also features basic science, special reports, case reports, board review questions, and more. Editorials and communications to the editor explore controversial issues and encourage further discussion by physicians dealing with emergency medicine.