Muniba Syed, Raham Sher Khan, Sadia Nazir, Sajad Khan, Zia Ul Islam, Salimullah Khan, Nakamura Ikuo
{"title":"Silencing of disease susceptibility genes: an effective disease resistance strategy against fungal pathogens.","authors":"Muniba Syed, Raham Sher Khan, Sadia Nazir, Sajad Khan, Zia Ul Islam, Salimullah Khan, Nakamura Ikuo","doi":"10.1007/s00299-025-03510-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Silencing of target susceptibility (S) genes in plants exhibits a promising and durable strategy for enhanced resistance to fungal pathogens by causing disruption in the host mechanisms that the pathogens exploit, offering an alternative to the traditional resistance gene-based approaches. Devastating fungal diseases have significantly reduced crop productivity, posing a potential threat to global food security. Producing disease-resistant cultivars is the most effective strategy for protecting crops against these fungal pathogens. Typically, susceptibility (S) genes in host plants facilitate the penetration and proliferation of phytopathogens. Perturbation of these S genes can potentially impede the compatibility between the host and the fungal pathogens, thereby providing broad-spectrum and lasting resistance. Consequently, the identification and targeting of S-genes have gained increasing interest in enhancing disease resistance in plants. In this review, we describe three distinct categories of S genes that function during different stages of the infection process. We focus on various gene silencing technologies, including RNA interference (RNAi), virus-induced gene silencing (VIGS), and CRISPR-Cas9, to improve plant disease resistance against fungal pathogens. The numerous examples discussed here illustrate the potential of S-genes for use in plant disease-resistance breeding.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 6","pages":"127"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03510-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Key message: Silencing of target susceptibility (S) genes in plants exhibits a promising and durable strategy for enhanced resistance to fungal pathogens by causing disruption in the host mechanisms that the pathogens exploit, offering an alternative to the traditional resistance gene-based approaches. Devastating fungal diseases have significantly reduced crop productivity, posing a potential threat to global food security. Producing disease-resistant cultivars is the most effective strategy for protecting crops against these fungal pathogens. Typically, susceptibility (S) genes in host plants facilitate the penetration and proliferation of phytopathogens. Perturbation of these S genes can potentially impede the compatibility between the host and the fungal pathogens, thereby providing broad-spectrum and lasting resistance. Consequently, the identification and targeting of S-genes have gained increasing interest in enhancing disease resistance in plants. In this review, we describe three distinct categories of S genes that function during different stages of the infection process. We focus on various gene silencing technologies, including RNA interference (RNAi), virus-induced gene silencing (VIGS), and CRISPR-Cas9, to improve plant disease resistance against fungal pathogens. The numerous examples discussed here illustrate the potential of S-genes for use in plant disease-resistance breeding.
期刊介绍:
Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as:
- genomics and genetics
- metabolism
- cell biology
- abiotic and biotic stress
- phytopathology
- gene transfer and expression
- molecular pharming
- systems biology
- nanobiotechnology
- genome editing
- phenomics and synthetic biology
The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.