Daniel C Jones, Anna E Elz, Azadeh Hadadianpour, Heeju Ryu, David R Glass, Evan W Newell
{"title":"Cell simulation as cell segmentation.","authors":"Daniel C Jones, Anna E Elz, Azadeh Hadadianpour, Heeju Ryu, David R Glass, Evan W Newell","doi":"10.1038/s41592-025-02697-0","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell spatial transcriptomics promises a highly detailed view of a cell's transcriptional state and microenvironment, yet inaccurate cell segmentation can render these data murky by misattributing large numbers of transcripts to nearby cells or conjuring nonexistent cells. We adopt methods from ab initio cell simulation, in a method called Proseg (probabilistic segmentation), to rapidly infer morphologically plausible cell boundaries. Benchmarking applied to datasets generated by three commercial platforms shows superior performance and computational efficiency of Proseg when compared to existing methods. We show that improved accuracy in cell segmentation aids greatly in detection of difficult-to-segment tumor-infiltrating immune cells such as neutrophils and T cells. Last, through improvements in our ability to delineate subsets of tumor-infiltrating T cells, we show that CXCL13-expressing CD8<sup>+</sup> T cells tend to be more closely associated with tumor cells than their CXCL13-negative counterparts in data generated from samples from patients with renal cell carcinoma.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":"1331-1342"},"PeriodicalIF":36.1000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-025-02697-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell spatial transcriptomics promises a highly detailed view of a cell's transcriptional state and microenvironment, yet inaccurate cell segmentation can render these data murky by misattributing large numbers of transcripts to nearby cells or conjuring nonexistent cells. We adopt methods from ab initio cell simulation, in a method called Proseg (probabilistic segmentation), to rapidly infer morphologically plausible cell boundaries. Benchmarking applied to datasets generated by three commercial platforms shows superior performance and computational efficiency of Proseg when compared to existing methods. We show that improved accuracy in cell segmentation aids greatly in detection of difficult-to-segment tumor-infiltrating immune cells such as neutrophils and T cells. Last, through improvements in our ability to delineate subsets of tumor-infiltrating T cells, we show that CXCL13-expressing CD8+ T cells tend to be more closely associated with tumor cells than their CXCL13-negative counterparts in data generated from samples from patients with renal cell carcinoma.
期刊介绍:
Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.