Ziye Xu, Yuting Wang, Wenjie Cai, Yu Chen, Yongcheng Wang
{"title":"Single microorganism RNA sequencing of microbiomes using smRandom-Seq.","authors":"Ziye Xu, Yuting Wang, Wenjie Cai, Yu Chen, Yongcheng Wang","doi":"10.1038/s41596-025-01181-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bacteria colonize nearly every part of the human body and various environments, displaying remarkable diversity. Traditional population-level transcriptomics measurements provide only average population behaviors, often overlooking the heterogeneity within bacterial communities. To address this limitation, we have developed a droplet-based, high-throughput single-microorganism RNA sequencing method (smRandom-seq) that offers highly species specific and sensitive gene detection. Here we detail procedures for microbial sample preprocessing, in situ preindexed cDNA synthesis, in situ poly(dA) tailing, droplet barcoding, ribosomal RNA depletion and library preparation. The main smRandom-seq workflow, including sample processing, in situ reactions and library construction, takes ~2 days. This method features enhanced RNA coverage, reduced doublet rates and minimized ribosomal RNA contamination, thus enabling in-depth analysis of microbial heterogeneity. smRandom-seq is compatible with microorganisms from both laboratory cultures and complex microbial community samples, making it well suited for constructing single-microorganism transcriptomic atlases of bacterial strains and diverse microbial communities. This Protocol requires experience in molecular biology and RNA sequencing techniques, and it holds promising potential for researchers investigating bacterial resistance, microbiome heterogeneity and host-microorganism interactions.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01181-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Bacteria colonize nearly every part of the human body and various environments, displaying remarkable diversity. Traditional population-level transcriptomics measurements provide only average population behaviors, often overlooking the heterogeneity within bacterial communities. To address this limitation, we have developed a droplet-based, high-throughput single-microorganism RNA sequencing method (smRandom-seq) that offers highly species specific and sensitive gene detection. Here we detail procedures for microbial sample preprocessing, in situ preindexed cDNA synthesis, in situ poly(dA) tailing, droplet barcoding, ribosomal RNA depletion and library preparation. The main smRandom-seq workflow, including sample processing, in situ reactions and library construction, takes ~2 days. This method features enhanced RNA coverage, reduced doublet rates and minimized ribosomal RNA contamination, thus enabling in-depth analysis of microbial heterogeneity. smRandom-seq is compatible with microorganisms from both laboratory cultures and complex microbial community samples, making it well suited for constructing single-microorganism transcriptomic atlases of bacterial strains and diverse microbial communities. This Protocol requires experience in molecular biology and RNA sequencing techniques, and it holds promising potential for researchers investigating bacterial resistance, microbiome heterogeneity and host-microorganism interactions.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.