{"title":"Role of self-assembled molecules in halide perovskite optoelectronics: an atomic-scale perspective.","authors":"Xiaoyu Wang, Xue Wang, Xinjiang Wang, Muchen Li, Hanming Li, Yuhao Fu, Lijun Zhang","doi":"10.1093/nsr/nwaf150","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant advancements in the study of metal halide perovskites worldwide, the large-scale industrialization of related optoelectronic devices faces ongoing challenges related to efficiency, long-term stability, and environmental and human toxicity. Self-assembled molecules (SAMs) have recently emerged as crucial strategies for enhancing device performance and stability, particularly by mitigating interface-related challenges. This review provides a comprehensive examination of the multifaceted roles of SAMs in enhancing the performance and stability of perovskite optoelectronic devices. We begin by introducing the evolution of SAMs, their unique physicochemical properties and implemented applications in optoelectronic devices. Subsequently, we delve into the diverse beneficial effects of SAMs in perovskite devices and elucidate the underlying atomic-scale mechanisms responsible for these performance enhancements. Finally, we critically analyze the current challenges associated with the rational design and implementation of SAMs in perovskite devices and conclude by outlining promising future research directions.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 5","pages":"nwaf150"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096312/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf150","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant advancements in the study of metal halide perovskites worldwide, the large-scale industrialization of related optoelectronic devices faces ongoing challenges related to efficiency, long-term stability, and environmental and human toxicity. Self-assembled molecules (SAMs) have recently emerged as crucial strategies for enhancing device performance and stability, particularly by mitigating interface-related challenges. This review provides a comprehensive examination of the multifaceted roles of SAMs in enhancing the performance and stability of perovskite optoelectronic devices. We begin by introducing the evolution of SAMs, their unique physicochemical properties and implemented applications in optoelectronic devices. Subsequently, we delve into the diverse beneficial effects of SAMs in perovskite devices and elucidate the underlying atomic-scale mechanisms responsible for these performance enhancements. Finally, we critically analyze the current challenges associated with the rational design and implementation of SAMs in perovskite devices and conclude by outlining promising future research directions.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.