Hang Yuan, Ruiqi Yong, Wenwen Yuan, Quan Zhang, Eng Gee Lim, Yongjie Wang, Fuzhou Niu, Pengfei Song
{"title":"Centrifugation-assisted lateral flow assay platform: enhancing bioassay sensitivity with active flow control.","authors":"Hang Yuan, Ruiqi Yong, Wenwen Yuan, Quan Zhang, Eng Gee Lim, Yongjie Wang, Fuzhou Niu, Pengfei Song","doi":"10.1038/s41378-025-00923-5","DOIUrl":null,"url":null,"abstract":"<p><p>Lateral flow assays (LFAs) are widely used in point-of-care testing (POCT) due to their simplicity and rapid operation. However, their reliance on passive capillary flow limits sensitivity, making it challenging to detect low-abundance biomarkers accurately. Approaches such as computer signal processing, chemical modification, and physical regulation have been explored to improve LFA sensitivity, but they remain limited by passive capillary-driven flow and uncontrollable flow rate. An alternative approach is to actively regulate fluid dynamics to optimize analyte binding and signal generation. The key challenge is to enhance LFA sensitivity while preserving compatibility with existing lateral flow strips (LFSs). Here, this study introduces a centrifugation-assisted LFA (CLFA) platform with smartphone-based result processing. This platform applies centrifugal force opposite to capillary flow, actively regulating fluid movement to optimize incubation time at the reaction zone and enhance detection performance. This approach increases signal intensity while maintaining a rapid detection process (5 min) and ensuring integration with traditional LFSs. As a proof-of-concept, the CLFA platform successfully detected human chorionic gonadotropin (hCG) and hemoglobin (Hb) in artificial urine without requiring custom-designed centrifugal discs or modified chromatography membranes. Its adaptability to diverse biomarkers and smartphone-based quantification make it a promising POCT tool, particularly in resource-limited settings.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"101"},"PeriodicalIF":7.3000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00923-5","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Lateral flow assays (LFAs) are widely used in point-of-care testing (POCT) due to their simplicity and rapid operation. However, their reliance on passive capillary flow limits sensitivity, making it challenging to detect low-abundance biomarkers accurately. Approaches such as computer signal processing, chemical modification, and physical regulation have been explored to improve LFA sensitivity, but they remain limited by passive capillary-driven flow and uncontrollable flow rate. An alternative approach is to actively regulate fluid dynamics to optimize analyte binding and signal generation. The key challenge is to enhance LFA sensitivity while preserving compatibility with existing lateral flow strips (LFSs). Here, this study introduces a centrifugation-assisted LFA (CLFA) platform with smartphone-based result processing. This platform applies centrifugal force opposite to capillary flow, actively regulating fluid movement to optimize incubation time at the reaction zone and enhance detection performance. This approach increases signal intensity while maintaining a rapid detection process (5 min) and ensuring integration with traditional LFSs. As a proof-of-concept, the CLFA platform successfully detected human chorionic gonadotropin (hCG) and hemoglobin (Hb) in artificial urine without requiring custom-designed centrifugal discs or modified chromatography membranes. Its adaptability to diverse biomarkers and smartphone-based quantification make it a promising POCT tool, particularly in resource-limited settings.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.